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Abstract In this paper we consider a firm that employs heterogeneous
workers to meet demand for its product or service. Workers differ in their
skills, speed, and/or quality, and they randomly leave, or turn over. Each
period the firm must decide how many workers of each type to hire or fire
in order to meet randomly changing demand forecasts at minimal expense.
When the number of workers of each type can by continuously varied, the
operational cost is jointly convex in the number of workers of each type,
hiring and firing costs are linear, and a random fraction of workers of each
type leave in each period, the optimal policy has a simple hire-up-to/fire-
down-to structure. However, under the more realistic assumption that the
number of workers of each type is discrete, the optimal policy is much more
difficult to characterize, and depends on the particular notion of discrete
convexity used for the cost function. We explore several different notions
of discrete convexity and their impact on structural results for the optimal
policy.
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1 Introduction

It is a great privilege to participate in this workshop and special volume in
honor of Arie Hordijk. He is a wonderful mathematician, with great insight
and creativity, and he has had a huge impact on the applied probability
community. Especially for the second author, Arie has been a role model,
mentor, and friend.

We consider a firm that employs heterogeneous wokers to meet demand
for its product or service. Workers differ in their skills, speed, and/or qual-
ity, and they randomly leave, or turn over. Each period the firm must decide
how many workers of each type to hire or fire in order to meet randomly
changing demand forecasts at minimal expense. When the number of work-
ers of each type can be continuously varied, the operational cost is jointly
convex in the number of workers of each type, hiring and firing costs are
linear, and a random fraction of workers of each type leave in each period,
the optimal policy has a simple hire-up-to/fire-down-to structure. However,
under the more realistic assumption that the number of workers of each
type is discrete, the optimal policy is much more difficult to characterize,
and depends on the particular notion of discrete convexity used for the cost
function. We explore several different notions of discrete convexity and their
impact on structural results for the optimal staffing policy.

We model our system as a discrete-time Markov decision process (MDP).
Let nt = (n1t, . . . nmt) be a non-negative m-dimensional vector that repre-
sents the current (at time t) number of workers of each of m types before
hiring decisions are made. Let θt represent the current state of the environ-
ment. The environment may affect the distribution of the demand during
the period, the pool of available employees from which we may hire, the
probabilities that employees will leave, and the costs we incur. At the be-
ginning of the period, based on nt and θt, the firm must decide how many
workers of each type to hire (or fire). Let dt = (d1t, . . . dmt) represent our
hiring (firing if dit < 0) decisions at time t, where dt is a function of nt

and θt though we suppress the dependence notationally. Let Nt+1 be the
worker vector at the end of the period (beginning of the next period), which
is a random function of nt + dt and θt. Using α as the one-period discount
factor, our objective is to minimize the total expected discounted cost,

Vt(nt, θt) = min
dt≥−ntt

E
T∑

j=t

αjE [ct(Nj ,dj ,θj) + Ct(Nj + dj , θj)|nt,dt, θt]

= min
dt≥−nt

[ct(nt,dt, θt) + Ct(nt + dt, θt)

+αE[Vt+1(Nt+1(nt + dt, θt), θt+1)|nt,dt, θt]],

where c represents our hiring and firing costs, and C represents our expected
operational costs under the optimal (or possibly heuristic) operational pol-
icy for meeting demand during the period, including wages for workers. We
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will assume linear hiring and firing costs, so

ct(nt,dt, θt) =
∑

i

[hit(θt)d+
i + fit(θt)d−i ]

for all nt, where hit(θt) > 0 and fit(θt) > 0, and d+
i = max{di, 0} and

d−i = max{−di, 0}. Then, using the arguments of Dixit [7], Eberly and van
Mieghem [8], Gans and Zhou [11], and Schmidt and Nahmias [29], we can
show the following, where ni = (n1, . . . , ni−1, ni+1, . . . , nm).

Theorem 1 Suppose ni and di, and hence yi = ni + di can take on con-
tinuous values, i.e. n,d,y ∈ Rm

+ , and Ct(y1, . . . , ym, θ) is jointly convex
in y for all θ. Also suppose that Nit(yit, θt) = Rit(θt)yit, where Rit(θt),
i = 1, 2, . . . ,m, are independent random fractions with support on [0, 1].
Then the optimal policy has the following hire-up-to/fire-down-to structure.
For each i there exist two functions Uit(ni, θ) ≤ Dit(ni, θ), such that for a
given starting state n = nt, for each i, if ni < Uit(ni) hire up to Uit(ni)
type i workers, i.e., hire Uit(ni) − ni type i workers, if ni > Dit(ni) fire
down to Dit(ni) workers, and otherwise do not hire or fire type i workers.

Dixit [7] and Eberly and van Mieghem [8] study a dynamic investment
problem where the (continuous) decision in each period is how much to
invest or disinvest in each of multiple resources (labor and capital in the case
of Dixit), and in which there is no turnover of the resources. They show the
optimality of the “Invest/Stay put/Disinvest (ISD)” policy, which invests
up to a critical number, or disinvests (fires) down to a critical number, or
makes no changes. We will henceforth call the hire-up-to/fire-down-to policy
of theorem 1 the ISD policy. Gans and Zhou [11], and Schmidt and Nahmias
[29] consider staffing models in which the resources are workers that may
leave, and where the number of workers can take on a continuous range
of values. Their models also permit learning, or shifts of workers from one
type to another. For Gans and Zhou, only type 1 workers may be hired and
none may be fired, and they show the optimality of a hire-up-to policy for
type 1 workers. Schmidt and Nahmias show the optimality of an ISD policy
when there is only one type of worker, and in a special case for two types
of workers.

Other research in capacity investment is based on the single-period
multi-product newsvendor model, and ignores issues of turnover. See Fine
and Freund [9], Shumsky and Zhang [30], Van Mieghem and Rudi [33], van
Mieghem [31] and [32], Harrison and van Mieghem [13], Netessine, Dobson,
and Shumsky [24], and the references therein.

The book of Bartholomew, Forbes, and McClean [3] gives an overview of
the use of Markov and deterministic models for managing human resources
with learning and turnover. Pinker and Shumsky [28] include experience-
based learning, in which the quality of the work depends on the amount of
similar work servers have done before. This tends to make flexibility look
relatively less attractive because workers who do many different things may
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not be as good at any particular one. Their model includes a tenure model
in which the retention rate depends on the stage of the model, which in
turn depends on the worker’s tenure. See also Misra, Pinker and Shumsky
[22] for a learning model where the problem is to simultaneously determine
salesforce size and pricing of products sold. Bordoloi and Matsuo [5] con-
sider a two-station tandem production model in which new workers work at
stage 1, then they learn to do stage 2 work, and then they are considered
flexible and can do both. Their model assumes flexible workers train stage
1 and stage 2 workers, and that some workers may leave. They use control
theory to determine the number of new workers to hire.

Pinker and Larson [27] consider both the strategic problem of hiring
regular workers and contracting part-time workers at the beginning of the
planning horizon along with the operational problem of scheduling part-
time workers over time depending on regular worker absenses and current
workload. See also Berman and Larson [4] and Larson and Pinker [18].

Another approach to staffing problems with heterogeneous workers is
based on queueing models, and much of this work has been in the call cen-
ter context. Refer to Mandelbaum [19] for an excellent annotated research
bibliography on call centers, and see Gans, Koole, and Mandelbaum [10],
as well as [16] and [26], for an overview. Perry and Nilsson [25] use simple
queueing approximations to study staffing for servers with heterogeneous
skill sets. Koole, Pot, and Talim [17] consider staffing levels of generalists
and specialists assuming overflow routing and no losses. Using stochastic
fluid models, Harrison and Zeevi [14] reduce the staffing problem to a multi-
dimensional newsvendor problem. Borst and Seri [6] consider heuristics for
the combined staffing and routing problem for skill-based routing, using
target delays and service levels in terms of probability of delay exceeding
a certain threshold. The skill matrix and number of available servers are
given. They obtain conditions characterizing the range of reasonable server
configurations, and propose two simple credit schemes for assigning calls to
servers. Armony and Maglaris [2] also consider both staffing and routing for
a queueing model with a single class of customer, so server “skills” corre-
spond to “speeds” of serving the common customer type. They show that
always routing customers to the fastest available server is asymptotically
optimal, and then show how to determine staffing levels to minimize costs
subject to the constraint that steady-state waiting probabilities cannot ex-
ceed a pre-specified level.

We consider discrete-space models, in which the number of workers at
any time, and the number to be hired or fired, and the random number that
leave, must take integer values. This makes the problem much harder than
in the continuous case of Gans and Zhou [11] and Schmidt and Nahmias
[29], and we can obtain only partial results.

Theorem 1 follows from the following facts that for continuously valued
n,y, i.e., n,y ∈ Rm

+ .

(1) If f(n) is jointly convex in n, then Ef(N(n)) is jointly convex in n
where Ni(ni) is an independent random fraction of ni.
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(2) If f(n,y) is jointly convex in (n,y), then infy∈A f(n,y) is jointly convex
in n where A ⊂ Rm

+ is a convex set.

Property (1) says that continuous joint convexity is preserved under
random fractional transformations; we will call it a preservation property.
Property (2) says that continuous joint convexity propagates, after opti-
mization, from one period to the next; we will call it a propagation property.
We will study various notions of discrete convexity to see what structural
results for the optimal policy can be obtained. A key issue for any notion of
discrete convexity is whether it has a preservation and a propagation prop-
erty. Of course, for a discrete model the random turnover transformation
cannot be a random fraction. The obvious discrete analogue is a binomial
model, Ni(ni)˜Binomial(ni, pi) for some, possibly random, pi, and we will
explore the implications of this model.

We first see what structural results we can obtain for our discrete-space
model without any convexity assumptions. We then study structural, preser-
vation, and propagation properties of componentwise convexity, supermod-
ularity, multimodularity, and directional convexity. Our work was inspired
by the elegant work of Altman, Gaujal, and Hordijk [1] on multimodularity.
We initially hoped that we would be able to develop a discrete analogue of
theorem 1 under the assumption of multimodular costs, but we were able
to obtain only partial results. Indeed, for none of the notions of discrete
convexity we considered were we able to do all three of: (0) completely
characterize the optimal policy for (1) random, binomial, turnover for (2)
a multistage problem. That is, with heterogeneous workers, no definition of
discrete convexity gave us all three of: full characterization, preservation,
and propagation.

We note here that if there were only one type of worker, or if the cost
function were separable (effectively reducing the problem to separate single-
worker-type problems), then a discrete analogue of theorem 1 would hold.
In particular, the notion of convexity is well-defined and unproblematic,
and there is no problem with its propagation over stages or its preservation
under binomial transformations (see, e.g., Karlin [15] or the proof of lemma
10). However, we are interested in situations where workers are flexible, i.e.,
some types may partially substitute for others, so there will be interaction
terms in any appropriate cost function.

2 Preliminary Results for the Discrete-Space Model

We start by developing a partial characterization of the optimal policy with-
out convexity assumptions. In this case, we need not worry about preserva-
tion or propagation, so to ease the notational burden, we assume a single-
period deterministic model. That is, with the obvious simplifications of our
earlier notation,

V (n) = min
d≥−n

[∑
i

[hid
+
i + fid

−
i ] + C(n + d)

]
.
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We first note that when each ni is sufficiently large or small, it is reasonable
to expect that there is a target value, y∗, such that it is optimal to hire/fire
to the target. That is, we are trying to characterize the “corners” of the
space, where it will be optimal to hire or fire for each worker type. Each
corner can be characterized by a subset of worker types, H, where workers
types in H will be hired, and those types in Hc will be fired. More precisely,
let S = {1, 2, . . . , n} be the set of worker types, let H ⊂ S be the set of
worker types that potentially will be hired, and let

VH(n) := min
{y:yi≥ni,i∈H,yi≤ni,i∈Hc}

WH(y)−

[∑
i∈H

hini −
∑
i∈Hc

fini

]
,

where
WH(y) :=

∑
i∈H

hiyi −
∑
i∈Hc

fiyi + C(y), y ∈ Zm
+ ,

is a function independent of n. We assume that for each corner character-
ized by H, there exists at least one target (k ≥ 1) defined by y∗(k)(H) :=
arg min{WH(y) : y ∈ Zm

+}, where k indexes the targets in case of multiple
targets. A sufficient (and reasonable) condition for the existence of y∗(k)(H)
for all H is that C(y) has a finite lower bound, and we will henceforth
make this assumption. Note that if two minima y∗(k)(H) and y∗(l)(H) are
such that y∗(k)i(H) ≥ y∗(l)i(H)i for all i ∈ H and y∗(k)i(H) ≤ y∗(l)i(H)i for all
i ∈ Hc, then we can ignore y∗(l)(H), and we will no longer consider y∗(l)(H)
a minimum. Let C(H) = ∪k{n: y∗(k)i(H) ≥ ni for i ∈ H and y∗(k)i(H) ≤ ni

for i ∈ Hc} be the “corner” defined by H and y∗(k)(H), k = 1, 2, . . .. It is
not hard to show that maxk{y∗(k),i(H)} ≤ mink{y∗(k),i(H\ i)} (see lemma 2
below), so that “corners” for distinct H and non-overlapping. We can par-
tially characterize the optimal policy as follows. If it is possible to move to
y∗(k)(H) by hiring workers of types in H and firing those of types in Hc,
then it is optimal to do so. The proof is straightforward and is omitted.

Lemma 1 The optimal policy for all n ∈ C(H) is to hire/fire to one of the
target values y∗(k)(H), i.e., d∗ = y∗(k)(H)− n.

So, for example, given a staffing level that minimizes costs if we only hire
workers, y∗k(S), if we start with fewer workers of each type, ni ≤ y∗(k)i(S),
then it is optimal to hire up to y∗k(S).

Let Hi(ni) := arg minni≥0 C(n)+hini and Fi(ni) := arg minnii≥0 C(n)−
fini, where ni = (n1, . . . , ni−1, ni+1, . . . , nm). Also, if there are multiple
minima, Hk

i and F k
i , we choose the largest for Hi and the smallest for Fi.

Lemma 2 maxk Hk
i (ni) ≤ mink F k

i (ni).

Proof Fix i and ni and suppose H := maxk Hk
i (ni) > F := mink F k

i (ni),
and let (ni,H) = (n1, . . . , ni−1,H, ni+1, . . . , nm) wtih (ni, F ) similarly de-
fined. By definition we have C(ni,H)+hH ≤ C((ni, F )+hF and C(ni, F )−
fF ≤ C((ni,H)− fH, i.e., f(H −F ) ≤ C(ni,H)−C((ni, F ) ≤ h(F −H).
But this with H > F gives us 0 < 0, a contradiction.
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Note that a global optimum for H, y∗(k)(H), must occur where the func-
tions Hi, i ∈ H, and Fi, i ∈ Hc intersect, because we ignore y∗(l)(H) if
there exists y∗(k)i(H) such that y∗(k)i(H) ≥ y∗(l)i(H)i for all i ∈ H and
y∗(k)i(H) ≤ y∗(l)i(H)i for all i ∈ Hc, and we take the largest for Hi and
the smallest for Fi in the case of multiple Hi and Fi.

Now we can divide the space Zn
+ into a set of interior regions, I = ∪Ik,

and an exterior region, E , where n ∈ I if Hi(ni) ≤ ni ≤ Fi(ni) for all i, and
n ∈ E otherwise. Note that C(H)\{y∗(k)(H)}k ⊂ E for all H. We let B ⊂ I be
the set of boundary points, so n ∈ B if for all i ∈ {1, . . . ,m}, Hi(ni) ≤ ni ≤
Fi(ni), and for some j ∈ {1, . . . ,m}, nj = Hj(nj) or nj = Fj(nj). Since a
global optimum for H, y∗(k)(H), must occur where the functions Hi, i ∈ H,
and Fi, i ∈ Hc intersect, we have y∗(k)(H) ∈ B for all k and H. Let us further
define contiguous regions of I, Ik, as follows. First define the neighbors of
a point n as all the points that can be reached from n by hiring or firing at
most one worker of each type, (the hyper-cube with n at its center and with
length 3 in each dimension), i.e., N(n) = {n +

∑m
i=1 kiei, ki = −1, 0, 1, i =

1, . . . ,m}, where ei is the vector with 1 for its ith component and 0 for
all other components. Let Ik form a partition of I such that if n ∈ Ik,
r ∈ N(n), and r ∈ I then r ∈ Ik and if n ∈ Ik either Ik = {n} or r ∈ Ik for
some r ∈ N(n). Let Bk be the corresponding partition of B. See figure 1 for
a two-dimensional example, where we illustrate continuous functions F and
H for simplicity. The boundaries, B1 and B2 are given by the heavy curves
surrounding I1 and I2, and in this example I2 can be ignored because it is
a subset of C(∅).

n1

n2
I1

I2

F2
H2H1

F1

y*({1,2})

y*({1})

y*({2})

y*(ø)

C

A

C(ø)

C({1,2})

C({2})

0

Figure 1 – Characterization of the Optimal Policy

For our next result we must also assume (as is reasonable in practice)
that there is an upper bound on the number of workers of each type that can
be hired. Let Mi be the upper bound for type i, and let Zm

+,M = {n : 0 ≤
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ni ≤ Mi, ni ∈ Z, i = 1, . . . ,m}. Then it will never be optimal to hire/fire to
a point n ∈ E .

Lemma 3 Suppose the domain of C is Zm
+,M. Then for n ∈ E it is optimal

to hire/fire to some point y ∈ I, and for n ∈ C(H) it is optimal to hire/fire
to some y∗(k)(H).

Proof Choose any n ∈ E , and suppose ni < Hi(ni), say. Then we have, by
definition of Hi(ni), that

C(y) + hi(yi − ni) < C(n),

where y = (n1, . . . , ni−1,Hi(ni), ni+1, . . . , nm). If y /∈ B but y ∈ C(H) for
some H, we can minimize the cost by moving to y∗(k)(H) ∈ B, from lemma
1. Otherwise we can repeat the argument to find y′ that equals y except for
replacing nj with Hj(nj) or Fj(nj) for some j, and so that the cost will be
lower to move to y′ rather than staying at n or y. Continuing to repeat the
argument we will finally have a point ŷ ∈ B such that the cost to hire/fire
to ŷ will be less than the cost of staying at n ∈ E . Note that we never return
to a point previously visited because each move strictly decreases the cost,
and Zm

+,M is finite, so the process converges. The idea is illustrated in figure
1, where the cost of staying at point A ∈ E is greater than the cost of hiring
type 1 workers to a point on H1 and then hiring type 2 workers to a point
on B1.

We need the upper bounds Mi when m > 2, because without them hiring
an infinite number of workers may be optimal, even with the assumption of
finite target values y∗(H). Suppose m = 3, H3(n1, n2) = 5 and F3(n1, n2) =
10 for all n1, n2, H1(n2, n3) = 3n2 for all n3, and H2(n1, n3) = 3n1 for all
n3, and we start at the point (7, 7, 7). Then following the argument in the
proof above we will continue to decrease the cost as we move back and forth
from (n1, 3n1, 7) to (3n2, n2, 7) with ever higher values of n1 and n2.

We can extend the idea of lemma 1 of having global “target values,”
to a notion of local target values. Suppose that only hiring is permitted,
i.e., we restrict ourselves to H = S. Then the optimal (hiring) policy
for can be characterized by a partition of Zm

+,M into subregions R(i) de-
fined by a sequence of target values, y(i) ∈ Zm

+,M as follows. Let y(0) =
y∗(S) := arg min{WS(y) : y ∈ Zm

+} (where, in the case of mulitple val-
ues, one is chosen arbitrarily) and let R(0) = {n : n ≤ y(0)}. Then let
y(i) := arg min{WS(y) : y ∈ Zm

+\ ∪i−1
j=0 R(j)} and R(i) = {n : n ≤ y(i),n ∈

Zm
+\ ∪i−1

j=0 R(j)}. This is because given n, the optimal policy depends on n
only through the constraint that y ≥ n. Thus, if y∗ is optimal for n, it
is also optimal for any m such that n ≤ m ≤ y. We say that the optimal
policy has a “target-box” structure.

Lemma 4 If only hiring is permitted, i.e., H = S, then the optimal policy
has the target-box structure defined above.



Staffing Decisions for Heterogeneous Workers with Turnover 9

If firing is permitted as well, we obtain a set of partitions, R
(i)
H and

corresponding targets y(i)
H for each H, such that the optimal policy start-

ing in state n is to hire/fire to y(i)
H∗ where y(i)

H∗
is such that WH∗(y(i)

H∗) =

minH WH(y(i)
H ).

Lemmas 1 and 3 give us some structure on the optimal policy, but to
refine it we will need to make some sort of convexity assumptions.

3 Notions of discrete convexity

3.1 Component-wise convexity

The simplest notion of discrete convexity is component-wise convexity. A
function on the integers, C(n), is component-wise convex (cwcx) if it is
convex in ni for all ni. In this case we can further characterize the single-
stage optimal policy: For points in the exterior it is optimal to move to
a point on the boundary, and for points in some interior region Ik, it is
optimal to do nothing or to move to a point on the boundary of a different
interior region. Let CH(y) =

∑
i∈H hiyi −

∑
i∈Hc fiyi + C(y), so y∗(H)

minimizes CH. Note that if C is cwcx, then so is CH. We have the following
corollary to lemma 3.

Corollary 1 If C is a component-wise convex function on Zm
+,M, then for

n ∈ Ik it is optimal to do nothing or to hire/fire to a point y ∈ B\Bk, for
n ∈ E it is optimal to hire/fire to some point y ∈ B, and for n ∈ C(H) it is
optimal to hire/fire to y∗(H).

Proof Now choose any k and n ∈ Ik (note that Bk ⊂ I). From the last
lemma, it will not be optimal to move to a point y ∈ E , so first choose some
point y ∈ Ik, say y ≥ n. (The argument for other y ∈ Ik is similar.) Then,
letting (ni,y) = (n1, . . . , ni, yi+1, . . . , ym), the cost to move from n to y will
be

∆ := C(y)− C(n) +
m∑

i=1

hi(yi − ni)

= C(y)− C(n1,y) + h1(y1 − n1) + C(n1,y)− C(n2,y) + h2(y2 − n2)

+ · · ·+ C(nm−1,y)− C(n) + hm(ym − nm) =:
m∑

i=1

∆i ≥ 0.

The last inequality follows because, for all i, Hi((ni,y)i) ≤ ni ≤ yi, so
∆i ≥ 0 from the convexity of C in direction i. Therefore, from any point in
Ik, it is not optimal to move to another point in Ik. Now choose some point
y ∈ I\Ik, say y ≥ n. (Again the argument for other y ∈ I\Ik is similar.)
Let y′ be a point such that y ≥ y′≥ n and y′ ∈ Bk. An argument similar
to the one above shows that from n it will cost less to move to y′ than to
move to y. The rest of the result follows from lemma 3.
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We can extend lemma 4, using the idea of the proof of corollary 1, to
further characterize the structure of the optimal hiring policy, when firing
is not permitted for any worker type.

Lemma 5 If only hiring is permitted, i.e., H = S, and C is component-wise
convex, then the optimal policy has the target-box structure of lemma 4 for
n such that ni < Hi(ni) for at least one i. For all other n, the optimal
policy is to do nothing.

We now consider whether component-wise convexity propagates and is
preserved under binomial transformations.

We say that a family of random vectors {N(n) = (N1(n), . . . , Nn(n)),n ∈
Zm} is stochastically component-wise convex, {N(n),n ∈ Zm} ∈ SCWCX,
if Ef(N(n)) is cwcx for any cwcx function f . We say that it is stochastically
cwcx in the sample path sense, {N(n),n ∈ Zm} ∈ SCWCX(sp), if for any
n ∈ Zm, for any i = 1, . . . ,m, and for any cwcx function f we can construct
N1, N2, N3, N4, on a common probability space such that

N1 =st N(n), N2 =st N(n + ei), N3 =st N(n + ei), N4 =st N(n + 2ei),

and such that, with probability 1,

f(N1)− f(N2) ≥ f(N3)− f(N4).

Of course {N(n),n ∈ Zm} ∈ SCWCX(sp) =⇒ {N(n),n ∈ Zm} ∈ SCWCX.
Let Bi(n), i = 1, . . . ,m be binomially distributed random variables with

parameters ni and pi for some pi , and let B(n) = (B1(n), . . . , Bn(n)).

Lemma 6 {B(n),n ∈ Zm} ∈ SCWCX(sp).

Proof Fix i. Given n ∈ Zm, first generate N1 =st B(n). With probability
p2

i let N2 = N3 = N1 + ei and N4 = N1 + 2ei,
with probability (1− pi)2 let N2 = N3 = N4 = N1,
with probability pi(1− pi) let N2 = N1, and N3 = N4 = N1 + ei,
and with probability pi(1 − pi) let N3 = N1, and N2 = N4 = N1 + ei.

The result follows.

Note that the lemma also holds for random, not necessarily independent
pi’s. The following example shows that component-wise convexity is not
propagated in the dynamic programming recursion, and a local minimum
need not be a global minimum.

Example 1 Consider the cwcx function: f(n1, n2) = 2 − n1 − n2 + n1n2,
n ∈ Z2

+. There are local minima at (0,2) and (2,0) of value 0, and a local
minimum at (1,1) of value 1. Also g(n1) = minn2 f(n1, n2) takes on the
values 0, 1, and 0 for n1 = 0, 1, and 2 respectively, so is not convex. Thus the
structure of corollary 1 holds only for a single stage problem with random
turnover.

We will next consider a class of discrete functions that has the preser-
vation and propagation properties, and allows us to further characterize
the optimal policy, though it still does not guarantee that an ISD policy is
optimal.
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3.2 Supermodularity

We say that C is supermodular (submodular) if C(n + ei)−C(n) is increas-
ing (decreasing) in ni, for all i. A supermodular cost function indicates that
workers of different training levels are substitutes, i.e., the advantage of
additional workers of one type is decreasing in the number of workers of
other types (so the cost is increasing). This may the case, for example,
when workers with more training may be able to replace workers with less
training. Alternatively, worker types may be complements, e.g., when they
work together, in which case a submodular cost function is appropriate.

Lemma 7 If C is supermodular (submodular) then Hi(ni) and Fi(ni) are
decreasing (increasing).

Proof We show the result for supermodular functions; the submodular case
is similar. Pick some point ni for some i, and let

ni = Hi(ni) := arg min
ni

(C(n) + hini).

Then C(n + kei) − C(n) ≥ 0 for all k > 0, and from supermodularity,
C(n + kei + ej)− C(n + ej) ≥ 0, so Hi(n + ej) ≤ Hi(n).

We can show that for our model, supermodularity is propagated in the
multistage problem when only hiring is permitted, so the optimal policy has
the target-box structure of lemma 4, and when we have only m = 2 worker
types. Let Ĉ(y1, y2) = C(y1, y2) + h1y1 + h2y2. We want to show that Vt

is supermodular given that C and Vt+1 are supermodular, where Vt(n) =
miny≥n{Ĉ(y)−h1n1−h2n2+Vt+1(y)} = miny≥n{Ĉ(y)+Vt+1(y)}−h1n1−
h2n2. First note that it is easy to show that Ĉ +Vt+1 is supermodular given
that C and Vt+1 are supermodular.

Lemma 8 If f(y) : = Ĉ(y) + Vt+1(y) is supermodular, then

g(n) := min
y≥n

f(y)

is supermodular.

Proof We need to show that for four points, ni, i = 1, 2, 3, 4, such that
n2 = n1 + k1e1, n3 = n1 + k2e2, n4 = n1 + k1e1 + k2e2, we have f(y1) +
f(y4) ≥ f(y2) + f(y3), where yi = arg miny≥ni

f(y). We consider the
following cases:

(i) y1 ≥ n4: In this case, because of the target-box structure of the
optimal policy (lemma 4), we must have that ni, i = 1, 2, 3, 4, are all in
the same subregion, and have the same target: y1 = y2 = y3 = y4, so
f(y1) + f(y4) ≥ f(y2) + f(y3) trivially.

(ii) y1 ≥ n3 but y1 is not greater than or equal to n4: Then y1 = y3, so
f(y1) = f(y3), and f(y4) ≥ f(y3) and f(y4) ≥ f(y2), so f(y1) + f(y4) ≥
f(y2) + f(y3).
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(iii) y1 ≥ n2 but y1 is not greater than or equal to n4: Same argument
as case (ii).

(iv) n1 ≤ y1 ≤ n4: Let ŷ2 = (y41, y12) and let ŷ3 = (y11, y42), where
yi = (yi1, yi2), i = 1, 4. Then f(y1) + f(y4) ≥ f(ŷ2) + f(ŷ3), and f(ŷi) ≥
f(yi), i = 2, 3.

Furthermore, supermodularity is preserved under state transformation
due to binomial turnover. We say that a family of random vectors {N(n) =
(N1(n), . . . , Nn(n)),n ∈ Zm} is stochastically supermodular, {N(n),n ∈
Zm} ∈ SSM , if Ef(N(n)) is supermodular for any supermodular function
f . We say that it is stochastically supermodular in the sample path sense,
{N(n),n ∈ Zm} ∈ SSM(sp), if for any n ∈ Zm, for any i = 1, . . . ,m,
and for any supermodular function f we can construct N1, N2, N3, N4, on
a common probability space such that

N1 =st N(n), N2 =st N(n + ei), N3 =st N(n + ej), N2
4 =st N(n + ei+ej),

and such that, with probability 1,

f(N1)− f(N2) ≥ f(N3)− f(N4).

Of course {N(n),n ∈ Zm} ∈ SSM(sp) =⇒ {N(n),n ∈ Zm} ∈ SSM . The
proof of the following is similar to that of lemma 6.

Lemma 9 {B(n),n ∈ Zm} ∈ SSM(sp).

While supermodularity provides a refinement of the policy structure
close to that of “hire-up-to/fire-down-to,” further refinement can be achieved
if additional convexity properties are satisfied.

3.3 Directional Convexity

We say that C is directionally convex (dcx) if C is cwcx and supermodular,
and from our earlier results, we can get some structure on the optimal policy,
though not a simple ISD structure. Assuming we have only m = 2 types of
workers and only hiring is permitted, from lemmas 5 and 7, we can construct
the optimal policy with the following algorithm. It successively characterizes
target-boxes and unknown boxes. Here each box is characterized by two
points, x and y, such that n is in the box if x(i) < n ≤ y(i), and the
optimal policy for such n is to hire-up-to y(i).

1. Set i = 0 and let the first unknown box be U (0) = Z2
+,M, and let u

(0)
1a =

u
(0)
2a = 0, u

(0)
1b = u

(0)
2b = M , so U (0) = {(n1, n2) : u

(0)
1a ≤ n1 ≤ u

(0)
1b , u

(0)
2a ≤

n2 ≤ u
(0)
2b }.

2. For n1 = u
(i)
1a , . . . , u

(i)
1b find H

(i)
2 (n1) = arg min

n2=u
(i)
2a ,...,u

(i)
2b

Ĉ(n1, n2).
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3. Find y
(i)
1 = arg min

n1=u
(i)
1a ,...,u

(i)
1b

Ĉ(n1,H
(i)
2 (n1)), and let y

(i)
2 = H

(i)
2 (y(i)

1 ).

Thus, y(i) is the global minimum for U (i), and the optimal policy for
u(i)

a ≤ n ≤ y(i) is to hire-up-to y(i) (this is a target-box) and the optimal
policy for y(i) ≤ n ≤ u(i)

b is to do nothing.
4. Let u

(i+1)
1a = u

(i)
1a , u

(i+1)
1b = y

(i)
1 , u

(i+1)
2a = y

(i)
2 + 1, u

(i+1)
2b = u

(i)
2b , U (i+1) =

{(n1, n2) : u
(i+1)
1a ≤ n1 ≤ u

(i+1)
1b , u

(i+1)
2a ≤ n2 ≤ u

(i+1)
2b }.

5. Set i to i + 1 and repeat 2-4 until U (i) = ∅.
4′. Let u

(i+1′)
1a = y

(i)
1a + 1, u

(i+1′)
1b = u

(i)
1b , u

(i+1′)
2a = u

(i)
2a , u

(i+1′)
2b = y

(i)
2 ,

U (i+1′) = {(n1, n2) : u
(i+1′)
1a ≤ n1 ≤ u

(i+1′)
1b , u

(i+1′)
2a ≤ n2 ≤ u

(i+1′)
2b }.

5′. Set i to i + 1′ and repeat 2,3, and 4′ until U (i) = ∅.

Consider the following example of a dcx function.

Ĉ(n) = 15 + .9n1 + 1.3n2 −min{13, 2n1 + 3n2}.

The optimal policy is shown below, where we give the values of Ĉ for 0 ≤
ni ≤ 7, with the values of n1 given along the bottom, and the values of n2

along the left side. Target values are indicated with bold script, and lines
indicate target-boxes. Thus, the target-boxes are U (0) = {n : 0 ≤ n1 ≤
2, 0 ≤ n2 ≤ 3}, U (1) = {n : 0 ≤ n1 ≤ 2, n2 = 4}, U (1′) = {n : 3 ≤
n1 ≤ 5, 0 ≤ n2 ≤ 1}, and U (2′) = {n : 6 ≤ n1 ≤ 7, n2 = 0}. Above the
target-boxes it is optimal to do nothing

.

7 11.1 12.0 12.9 13.8 14.7 15.6 16.5 17.4
6 9.8 10.7 11.6 12.5 13.4 14.3 15.2 16.1
5 8.5 9.4 10.3 11.2 12.1 13.0 13.9 14.8
4 8.2 8.1 9.0 9.9 10.8 11.7 12.6 13.5
3 9.9 8.8 7.7 8.6 9.5 10.4 11.3 12.2
2 11.6 10.5 9.4 8.3 8.2 9.1 10.0 10.9
1 13.3 12.2 11.1 10.0 8.9 7.8 8.7 9.6
0 15.0 13.9 12.8 11.7 10.6 9.5 8.4 8.3

0 1 2 3 4 5 6 7
Let us compare the optimal policy for this example with what it would

be if we were permitted to hire fractional workers. In that case, the global
minimum is at (0, 4.33), so, if we start with no workers, the optimal policy
is to hire no type 1 workers and 4.33 type 2 workers (vs. hiring 2 type 1
workers and 3 type 2 workers in the discrete case). If we start with 0 type 1
workers and 4 type 2 workers, then in the continous case the optimal policy
is to hire no type 1 workers and 0.33 type 2 workers (vs. hiring 1 type 1
worker and 0 type 2 workers in the discrete case).

Though directional convexity is preserved under binomial turnover from
lemmas 6 and 9, it is not propagated. Indeed, the cwcx function of exam-
ple 1 is also supermodular, and hence is dcx, and it does not satisfy the
propagation property.
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3.4 Multimodularity

Multimodularity strengthens the notion of directional convexity, because
multimodular functions are cwcx and supermodular. We will see that it
gives us a full characterization of the optimal policy as an ISD policy for
deterministic costs, and it satisfies the propagation property. Unfortunately,
it does not satisfy the binomial preservation property.

We suppose there are m = 2 types of workers. A function f(n) for n ∈ Z2

is multimodular if the following three inequalities hold, where the first two
correspond to a type of midpoint convexity, and the third is supermodular-
ity. For all n,m ∈ Zm,

f(n+2e1) + f(n + e2) ≥ f (n + e1) + f (n + e1 + e2) (1)
f(n+2e2) + f(n + e1) ≥ f (n + e2) + f (n + e1 + e2) (2)
f(n) + f(n + e1 + e2) ≥ f (n + e1) + f (n + e2) . (3)

See Hajek [12] and Altman, Gaujal, and Hordijk [1].
A local optimum is a global optimum for multimodular functions where

a local optimum is defined as follows. We say n∗ is a local multimodular
optimum if, f(n∗) ≤ f(n∗ + ei); f(n∗) ≤ f(n∗ − ei), i = 1, 2, and f(n∗) ≤
f(n∗+e1−e2). If f is multimodular and n∗ is a local optimum, then it is a
global optimum, i.e., f(n∗) ≤ f(m) for all m ∈ Z2. Note that the condition
for local optimum is stronger than that claimed in Altman, Gaujal, and
Hordijk [1]. The requirement of the stronger condition was recently shown
by Murota [21].

For multimodular functions, even in higher dimensions than two, the
optimal policy has the ISD structure. This can be shown from theorem
1 and the fact that the piecewise affine interpolation of a multimodular
function is jointly convex [1]. See also Narongwanich, Duenyas, and Birge
[23].

Theorem 2 If C is multimodular then the optimal policy has the follow-
ing hire-up-to/fire-down-to structure. For each i there exist two functions
Ui(xi) ≤ Di(xi), such that for a given starting state x, for each i, if
xi < Ui(xi) hire up to Ui(xi) type i workers, i.e., hire Ui(xi) − xi type
i workers, if xi > Di(xi) fire down to Di(xi) workers, and otherwise do not
hire or fire type i workers.

Moreover, multimodular functions propagate under the dynamic pro-
gramming recursion. That is, when f is multimodular, so is g where g(n) =
minm f(m,n) [23].

We say that a family of random vectors {N(n) = (N1(n), . . . , Nn(n)),n ∈
Zm} is stochastically multimodular, {N(n),n ∈ Zm} ∈ SMM , if Ef(N(n))
is multimodular for any multimodular function f . We say that it is stochasti-
cally multimodular in the sample path sense, {N(n),n ∈ Z2} ∈ SMM(sp),
if for any n ∈ Z2 and for j = 1, 2, 3 (corresponding to inequalities 1-3)
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and for any multimodular function f we can construct N j
1 , N j

2 , N j
3 , N j

4 , on
a common probability space such that

N1
1 = stN(n + e2), N1

2 =st N(n + e1),
N1

3 = stN(n + e1 + e2), N1
4 =st N(n + 2e1),

N2
1 = stN(n + e1), N2

2 =st N(n + e2),
N2

3 = stN(n + e1 + e2), N2
4 =st N(n + 2e2),

N2
1 = stN(n), N2

2 =st N(n + e1),
N2

3 = stN(n + e2), N2
4 =st N(n + e1 + e2),

and such that, for j = 1, 2, 3, with probability 1,

f(N j
1 ) + f(N j

4 ) ≥ f(N j
2 ) + f(N j

3 ).

Of course {N(n),n ∈ Z2} ∈ SMM(sp) =⇒ {N(n),n ∈ Z2} ∈ SMM .
We will show below that multimodularity is not preserved in general for

binomial transformations, but first we show that a special case of a binomial
random variable does indeed preserve multimodularity, in the strong, sample
path, sense.

Let Bi(n), i = 1, 2 be independent binomially distributed random vari-
ables with parameters ni and pi for some pi , and let B(n) = (B1(n), B2(n)).

Lemma 10 If p1 = p2 =: p, {B(n),n ∈ Z2} ∈ SMM(sp).

Proof We show the result for the first inequality, N1
i ; the arguments for

the other two are similar. Given n ∈ Z2, first generate N1
0 =st B(n). With

probability p2 let

N1
1 = N1

0 + e2, N
1
2 = N1

0 + e1, N
1
3 = N1

0 + e1 + e2, N
1
4 = N1

0 + 2e1,

with probability (1− p)2 let N1
1 = N1

2 = N1
3 = N1

4 = N1
0 ,

with probability p(1− p) let N1
1 = N1

2 = N1
0 , N1

3 = N1
4 = N1

0 + e1,
and with probability p(1 − p) let N1

1 = N1
3 = N1

0 + e2, N
1
2 = N1

4 =
N1

0 + e2.
Then N1

1 , N1
2 , N1

3 , N1
4 have the appropriate marginal distributions, and

inequality 3.4 holds for f multimodular.

Of course the same proof shows that even for p a random variable,
{B(n),n ∈ Z2} ∈ SMM(sp) (by conditioning on p). The following result
shows that the assumption of identical departure rates cannot be relaxed
for stochastic multimodularity to be preserved.

Proposition 1 {B(n),n ∈ Z2} /∈ SMM in general.

Proof For {B(n),n ∈ Z2} ∈ SMM we need, from inequality (1),

∆1 := Ef(B(n + e2)) + Ef(B(n + 2e1))
− [Ef(B(n + e1)) + Ef(B(n + e1 + e2))] ≥ 0.
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We have

∆1 = p2Ef(B(n) + e2) + (1− p2)Ef(B(n)) + p2
1Ef(B(n) + 2e1)

+2p1(1− p1)Ef(B(n) + e1) + (1− p1)2Ef(B(n))
−[p1Ef(B(n) + e1) + (1− p1)Ef(B(n)) + p1p2Ef(B(n) + e1 + e2)
+p1(1− p2)Ef(B(n) + e1) + p2(1− p1)Ef(B(n) + e2)
+(1− p1)(1− p2)Ef(B(n))]

= p1{(p1 − p2) [Ef(B(n) + 2e1)− 2Ef(B(n) + e1) + Ef(B(n))]
+p2[Ef(B(n) + e2) + Ef(B(n) + 2e1)− Ef(B(n) + e1)
−Ef(B(n) + e1 + e2)]}

The second term is positive from inequality (1), and if p1 ≥ p2 the first term
is positive because multimodular functions are componentwise convex. On
the other hand, if we compute ∆2 for inequality (2), we will need p2 ≥ p1

for the corresponding first term to be positive. Thus, we can construct an
example so that one of them is negative for appropriately chosen f , p1, and
p2. For example, consider f(n, m) = n2+m2+2mn, which is a multimodular
function. Then ∆1 ≥ 0 iff p1 ≥ p2, but ∆2 ≥ 0 iff p1 ≤ p2.

We mention here another stochastic model that preserves multimodu-
larity. In this case, all of the workers of a given type leave with some
(possibly random) probability. This is basically the stochastic assumption
for the model of Narongwanich et al, [23] in which (all of the) capacity of a
given type can become obsolete. The proof is similar to that of lemma 10.

Lemma 11 Suppose Ni(n) = ni with some, possibly random, probability pi

and 0 with probability 1−pi, where the Ni’s are not necessarily independent.
Then {N(n),n ∈ Z2} ∈ SMM(sp).

Summarizing our strongest results for multimdodular cost functions, we
have the following

Theorem 3 Suppose that for our original, multistage model, Ct(y1, y2, θ)
is multimodular in y for all θ. Also suppose that Nit(yit, θt), i = 1, 2, are
independent binomial random variables with parameters yit and θt (for all
i), or Nit(yit, θt), i = 1, 2 are all-or-nothing random variables as defined in
lemma 11 with parameters yit and θit. Then the optimal policy is an ISD
policy.

Theorem 4 Suppose that for a single-stage model, C(y1, y2, θ) is multi-
modular in y for all θ. Also suppose that Nit(yit, θt) are independent bino-
mial random variables with parameters yit and θit. Then the optimal policy
is an ISD policy.



Staffing Decisions for Heterogeneous Workers with Turnover 17

4 Acknowledgements

We would like to thank the organizers of this workshop and special volume
for their efforts, and the referee for helpful comments. We especially wish
to thank Arie Hordijk for his inspiration and dedication to the field.

References

1. Altman E, Gaujal B and Hordijk A (2000) Multimodularity, convexity, and
optimizations properties. Math. of Opns. Res. 25: 324-347.

2. Armony M and Maglaris C (2003) On customer contact centers with a call-
back option: customer decisions, routing rules, and system design. Opns. Res.
52: 271-292.

3. Bartholomew DJ, Forbes AF and McClean SI (1991) Statistical techniques
for Manpower Planning, 2nd Ed. John Wiley and Sons, New York.

4. Berman O and Larson RC (1994) Determining optimal pool size of a tempo-
rary call-in work force. Europ. J. of Opns. Res. 73: 55-64.

5. Bordoloi SK and Matsuo H (2001) Human resource planning in knowledge-
intensive operations: A model for learning with stochastic turnover. Europ. J.
of Opns. Res. 130: 169-189.

6. Borst S and Seri P (1999) Robust algorithms for sharing agents with multiple
skills. Working paper, Bell Laboratories, Lucent Technologies, Murray Hill,
NJ.

7. Dixit A (1997) Investment and employment dynamics in the short run and
the long run. Oxford Econ. Papers 49: 1-20.

8. Eberly JC and van Mieghem JA (1997) Multi-factor dynamic investment un-
der uncertainty. J. of Econ. Theory 75: 345-387.

9. Fine CH and Freund RM (1990) Optimal investment in product-flexible man-
ufacturing capacity. Mgt. Sci. 36: 449-466.

10. Gans N, Koole G, and Mandelbaum A (2003) Telephone call centers: Tutorial,
review, and research prospects. Manuf. & Service Opns. Mgt. 5: 79–141.

11. Gans N and Zhou Y-P (2002) Managing learning and turnover in employee
staffing. Opns. Res. 50: 991-1006.

12. Hajek B (1985) Extremal splittings of point processes. Math. of Opns. Res.
10: 543-556.

13. Harrison JM and van Mieghem JA (1999) Multi-resource investment strate-
gies: Operational hedging under demand uncertainty. Eur. J. of Opnl. Res.
113: 17-29.

14. Harrison JM and Zeevi A (2003) A Method for Staffing Large Call Centers
Based on Stochastic Fluid Models. Preprint.

15. Karlin S (1968) Total Positivity, vol.1. Stanford CA: Stanford University
Press.

16. Koole G and Mandelbaum A (2002) Queueing models of call centers: An
introduction. Annals of Opns Res, 113, 41–59, 2002.

17. Koole G, Pot A and Talim J (2003) Routing heuristics for multi-skill call
centers. Proceedings of the 2003 Winter Simulation Conference.

18. Larson RC and Pinker EJ (2000) Staffing challenges in financial services, in
Creating Value in Financial Services: Strategies, Operations, and Technolo-
gies, E.L. Melnick, P.R. Nayyar, M.L. Pinedo, S. Seshadri (Eds.). Boston:
Kluwer Academic Publishers, Chapter 17: 327–356.



18 Hyun-soo Ahn, Rhonda Righter and J. George Shanthikumar

19. Mandelbaum A (2003) Call centers: Research bibliography with abstracts.
Downloadable from: http://ie.technion.ac.il/serveng

20. Murota K (2003) Discrete Convex Analysis. SIAM, Philadelphia.
21. Murota K (2004) Note on Multimodularity and L-Convexity, Report METR

2004-31. Department of Mathematical Informatics, The University of Tokyo,
Tokyo, Japan.

22. Misra S, Pinker E and Shumsky RA (2003) Sizing and structuring a slaesforce
in the presence of job flexibility and experience-based learning. Preprint.

23. Narongwanich W, Duenyas I and Birge JR (2003) Optimal portfolio of recon-
figurable and dedicated capacity under uncertainty. Preprint.

24. Netessine S, Dobson G and Shumsky RA (2002) Flexible service capacity:
Optimal investment and the impact of demand correlation. Opn. Res. 50:
375-388.

25. Perry M and Nilsson A (1994) Performance modeling of automatic call distrib-
utors: Operator services staffing with heterogeneous positions. Proceedings of
the 14th International Teletraffic Congress, ITC-14. Elsevier: Amsterdam.
1023-1032.

26. Pinedo M, Seshadri S and Shanthikumar JG (2000) Call centers in financial
services: Strategies, technologies and operations, in Creating Value in Finan-
cial Services: Strategies, Operations, and Technologies, E.L. Melnick, P.R.
Nayyar, M.L. Pinedo, S. Seshadri (Eds.). Boston: Kluwer Academic Publish-
ers, Chapter 18: 357–388.

27. Pinker EJ and Larson RC (2003) Optimizing the use of contingent labor when
demand is uncertain. Eur. J. of Operational Res. 144: 39-55.

28. Pinker EJ and Shumsky RA (2000) The efficiency-quality trade-off of cross-
trained workers. Manuf. & Serv. Opns. Mgt. 2: 32-48.

29. Schmidt CP and Nahmias S (2003) Workforce planning under uncertainty.
Preprint.

30. Shumsky RA and Zhang F (2003) Dynamic capacity management with sub-
stitution. Preprint.

31. van Mieghem JA (1998) Investment strategies for flexible resources. Mgt. Sci.
44: 1071-1078.

32. van Mieghem JA (2002) Capacity portfolio investment and hedging: Review
and new directions. Preprint.

33. van Mieghem JA and Rudi N (2002) Newsvendor networks: Inventory man-
agement and capacity investment with discretionary activities. Manuf. &
Serv. Opns. Mgt. 4: 313-335.


