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Abstract We consider a zero-sum stochastic game with side constraints
for both players with a special structure. There are two independent con-
trolled Markov chains, one for each player. The transition probabilities of
the chain associated with a player as well as the related side constraints
depend only on the actions of the corresponding player; the side constraints
also depend on the player’s controlled chain. The global cost that player 1
wishes to minimize and that player 2 wishes to maximize, depend however
on the actions and Markov chains of both players. We obtain a linear pro-
gramming (LP) formulations that allows to compute the value and saddle
point policies for this problem. We illustrate the theoretical results through
a zero-sum stochastic game in wireless networks in which each player has
power constraints.

1 Introduction

Zero-sum stochastic games have been an active area of research and a useful
tool in many applications. Yet, it is well known that identifying saddle
point policies even in zero-sum stochastic games with finite state and action
spaces is hard. Unlike the situation in Markov Decision Processes (MDPs)
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in which stationary optimal policies are known to exist (under suitable
conditions), and unlike the situation in constrained MDPs (CMDPs) with a
multichain structure, in which optimal Markov policies exist [7,10], we know
that saddle point policies in stochastic games need in general to depend
on the whole history [5]. This difficulty motivated researchers to search for
various possible structures of stochastic games in which saddle point policies
exist among stationary or Markov strategies and are easier to compute.

In this paper we consider two CMDPs, where the transition probabilities
of each one are controlled by just one of the players who has information
only on the history of the CMDP it controls. The cost is determined jointly
by the states and actions of both CMDPs. For the expected average cost,
we obtain linear programs (LPs) that allow us to compute the value and
saddle point policies for both the unichain as well as the multi-chain ergodic
structure. We illustrate the theoretical results through a zero-sum stochastic
game in wireless networks in which each player has power constraints.

Related work Several papers have already dealt with constrained stochas-
tic games. An important class of zero-sum stochastic games that can be
solved using LPs has been introduced in parallel in [8–10,12]. In those games
only one player controls the transition probabilities (but both players de-
termine the cost through their actions). The existence of a stationary Nash
equilibrium in non zero-sum constrained stochastic games has been estab-
lished in [3] under a Slater-type condition. A highly non-stationary saddle-
point was obtained in [11] for constrained stochastic games with expected
average costs. Our work as well as the class of games we study are based on
[6], who introduced LPs for obtaining the saddle point policies and the value
of stochastic games with sample average costs and a unichain structure.

2 The model

We consider two MDPs characterized by the triplet (Ik,Ak,Pk), k = 1, 2,
where Ik,Ak stand for the finite state and action spaces, respectively, and
where Pk = {P kiaj} stands for the corresponding transition probabilities;
P kiaj is the probability that player k’s state moves from i to j if the player
chose action a. At state i ∈ Ik, the set of actions available to player k is
Ak(i). Let Kk stand for the set of (i, a), i ∈ Ik, a ∈ Ak(i).

Define a history hn in MDP k as hn = (i0, a0, i1, a1, ..., in−1, an−1, in)
where i` ∈ Ik, a` ∈ Ak(i`), ` = 0, 1, 2, .... A player k strategy u is a sequence
(u0, u1, ...) where u` is a probability measure over Ak(i`) conditioned on hn.
Note that player k strategies do not depend on the realizations of the cost.
If they were allowed to depend on these then a player could use the costs
to estimate the state and actions of the other player.

Player k has mk side constraints of the form Dk
s (β

k, uk) ≤ ξks , s =
1, 2, ...,mk, where βk is a probability distribution of the initial state of
player k, and where ξks are some constants. Let β = (β1, β2). We shall write
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the side constraints in the vector form

Dk(βk, uk) ≤ ξk, k = 1, 2. (1)

Denote by Uk the set of all strategies (also called policies) for player k, and
let Ukc be the set of strategies of player k that satisfy (1). Let Uc := (U1

c , U
2
c ).

We shall assume throughout

Ukc is non empty, k = 1, 2. (2)

Let Uk(S) and Uk(M) be the set of stationary and of Markov policies,
respectively, of player k, and set Ukc (S) and Ukc (M) to be the corresponding
subsets that satisfy (1). A stationary policy u ∈ Uk(S) is identified with
a set of probability functions denoted (with some abuse of notation) as
u(·|i), over the actions Ak(i). For all i ∈ Ik u(a|i) is then the probability of
choosing action a if the state is i. A Markov policy u ∈ Uk(M) is identified
with a set of probability functions denoted (with some abuse of notation)
as u(·, n|i), over the actions Ak(i). For all i ∈ Ik and integer n u(a, n|i) is
the probability of choosing action a at time n if the state is i.

We further introduce the cost C(β1, β2, u1, u2) where uk ∈ Uk which
player 1 wishes to minimize and which player 2 wishes to maximize. We
seek a saddle point couple (u∗, v∗) ∈ Uc, i.e. a policy for each player such
that

V := inf
u∈U1

c

C(β, u, v∗) = C(β, u∗, v∗) = sup
v∈U2

c

C(β, u∗, v) (3)

Next we specify what C and D will stand for.
Let c(i, j, a, b) correspond to the immediate cost for player 1 when she is at
state i and chooses action a, and when player 2 is at state j and chooses
action b.
Let dks(i, a) be an immediate cost related to the sth side constraint of player
k, when she is at state i and chooses action a.

The expected average cost. We define the expected average costs as

Cea(β, u1, u2) = lim sup
t→∞

1
t

t−1∑
n=0

Euβc(I
1
n, I

2
n, A

1
n, A

2
n), (4)

Dk,s
ea (βk, uk) = lim sup

t→∞

1
t

t−1∑
n=0

Eu
k

βkd
k
s(I

k
n, A

k
n).

Remark 1 It follows from the proof of [2, Theorem 2.8] that our results are
unchanged if we replace the lim sup in (4) by lim inf.

3 The unichain case

We consider the expected average cost with a unichain structure: under any
pure stationary policy1 uk for player k, the corresponding Markov chain has
a single ergodic class.

1 A pure policy is one that does not use any randomizations.
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We solve the problem

inf
u1∈U1

c

sup
u2∈U2

c

Cea(β, u1, u2). (5)

To do that, we first fix a stationary policy u1 for player 1, then the player
2 is faced with a CMDP for which we know that an optimal policy exists
within the stationary policies, see [2, Theorem 2.8]2. So for player 2 we find
the optimal value of the cost (4) Θ∗ea(u

1) for a fixed stationary u1. We then
solve the optimization problem infu1∈U1

c (S)Θ
∗
ea(u

1). Later we shall show
that indeed one can restrict to stationary policies for player 1 without loss
of optimality.

3.1 Some definitions

Define for a fixed u ∈ Uk, xk,tea (βk, u) = {xk,tea (βk, u; i, a)(i,a)∈Kk} where

xk,tea (βk, u; i, a) :=
1
t

t−1∑
n=0

Puβk(Ikn = i, Akn = a), (i, a) ∈ Kk

(Puβk is the unique probability measure corresponding to a policy u ∈ Uk

for an initial distribution βk over the states). The set Xk
ea(β

k, u) defined as
the set of accumulation points of xk,tea (βk, u) is known as a set of occupation
measures corresponding to a strategy uk and an initial distribution βk.

Let Qk
ea be the set of vectors ρ ∈ R|Kk| satisfying

Qk
ea =



∑
(j,a)∈Kk

ρ(j, a)(δi(j)−Pk
jai) = 0, ∀i ∈ Ik,∑

(j,a)∈Kk

ρ(j, a) = 1,

ρ(j, a) ≥ 0, ∀(j, a) ∈ Kk,

(6)

where δi(j) is the indicator which is equal to one if i = j and is zero
otherwise. It should be noted that any ρ satisfying the above constraints is
a probability measure.

Define further

Qk
ea,c :=

{
ρ ∈ Qk

ea :
∑

(j,a)∈Kk

ρk(j, a)dks(j, a) ≤ ξks , s = 1, ...,mk

}
Note that Qk

ea,c is non-empty due to Assumption (2), see [7].
It is shown in [1,7] that the set of achievable occupation measures

achieved by all feasible strategies uk ∈ Ukc equals to those achieved by
stationary policies and further equals to the set Qk

ea,c.

2 This reference implies the sufficiency of stationary policies for both the cases
of maximizing as well as for minimizing Cea subject to side constraints.
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For a given probability measure ρ over Kk, we define the stationary
policy wk(ρk) as

wki (a, ρ) =
ρ(i, a)∑

a′∈A(i) ρ(i, a′)
, a ∈ Ak(i), (7)

whenever the denominator is non-zero (when it is zero, wk(ρ) is chosen
arbitrarily). Here wki (a, ρ) is the probability that player k will choose action
a at state i according to this stationary policy.

Let u be a policy for which for all i and a, Puβ (Ikn = i, Akn = a) has a
limit which we denote by πkea(β

k, u; i, a). For policies with this property we
have

πkea(β
k, u; i, a) = lim

t→∞
xk,tea (βk, u; i, a).

These include in particular the stationary policies. If πk(u) = {πk(u; i)}i∈Ik

is the unique steady state distribution of the Markov chain induced by a
stationary policy u ∈ Uk, then

πkea(β
k, u; i, a) = πk(u; i)u(a|i),

which is independent of the initial distribution βk.

3.2 Player 2

We fix a stationary policy u1 for player 1. Then player 2 is faced with a
standard CMDP. It follows from [1] that the optimal value for player 2
among all policies U2

c is given by the value of the following LP:

Find Θ∗ea(u
1) := max

ρ2∈Q2
ea,c

∑
(j,a)∈K2

ρ2(j, a)c(u1; j, a) (8)

where c(u1; j, b) :=
∑

(i,a)∈K1

π1
ea(β

1, u1; i, a)c(i, j, a, b), u1 ∈ U1. (9)

Moreover, w2(ρ2) is an optimal stationary policy for player 2 in this
CMDP [1]. Hence the above LP allows us to obtain a best response of
player 2 against a stationary policy of player 1.

We shall also use the dual LP. Its decision variables are ψ2, φ2(i), i ∈
I2 as well as the m-dimensional non-positive vector λ2 ∈ Rm2

− (ψ2 will
correspond to the value of the expected average problem for fixed stationary
u1 and for an immediate reward of c(u1; j, b)+ < λ2, d2(j, b) >, and λ2 will
correspond to Lagrange multipliers related to the side constraints of player
2). With < ·, · > denoting the scalar product, we have:

Θ∗ea(u
1) := min

ψ2,φ2,λ2
ψ2 −

m2∑
s=1

λ2
sξ

2
s subject to (10)

φ2(j) + ψ2 ≥ c(u1; j, b)+ < λ2, d2(j, b) >
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+
∑
`∈I2

P2
jb`φ

2(`), ∀(j, b) ∈ K2 (11)

λ2
s ≤ 0, s = 1, . . . ,m2.

3.3 Player 1

It follows from the previous subsection that Player 1 is faced with the opti-
mization problem: infu1∈U1

c (S)Θ
∗
ea(u

1) where Θ∗ea(u
1) is given in (10). It is

seen from (9), however, that the dependence on u1 is only through occupa-
tion measure X1

ea(β
1, u1). We know from [1] that{
X1
ea(β

1, u1) : u1 ∈ U1
c (S)

}
= Q1

ea,c (12)

Moreover, for any ρk ∈ Qk
ea, the stationary policy defined in (7) provides

πkea(β
k, w(a, ρ); i, a) = ρk(i, a),

see [1]. Hence, the following LP provides the value for problem (5), when
player 1 restricts to stationary policies (we shall show later that such re-
striction is without loss of optimality).

LPea : Find C∗ea := min
ψ2,φ2,λ2,ρ1∈Q1

ea,c

ψ2 −
m2∑
s=1

λ2
sξ

2
s subject to

φ2(j) + ψ2 ≥
∑

(i,a)∈K1

ρ1(i, a)c(i, j, a, b)+ < λ2, d2(j, b) >

+
∑
`∈I2

P2
jb`φ

2(`), ∀(j, b) ∈ K2

λ2
s ≤ 0, s = 1, . . . ,m2.

Moreover, for any ρ∗1 ∈ Q1
ea,c for which (ψ2, φ2, λ2, ρ1) achieves the above

minimization, the corresponding w1(ρ∗1) (defined in (7)) provides a policy
for Player 1 which is the best among stationary policies.

Next we consider the problem

sup
u2∈U2

c (S)

inf
u1∈U1

c

Cea(β, u1, u2). (13)

Introduce the following LP:

DPea : Find C∗
ea := max

ψ1,φ1,λ1,ρ2∈Q2
ea,c

ψ1 −
m1∑
s=1

λ1
sξ

1
s subject to

φ1(i) + ψ1 ≤
∑

(j,b)∈K2

ρ2(j, b)c(i, j, a, b)+ < λ1, d1(i, a) >

+
∑
`∈I1

P1
ia`φ

1(`), ∀(i, a) ∈ K1

λ1
s ≥ 0, s = 1, . . . ,m1.
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By the same arguments as before, for any ρ∗2 ∈ Q2
ea,c for which (ψ1, φ1, λ1, ρ2)

achieves the maximal value of C∗
ea, the corresponding w2(ρ∗2) (defined in (7))

provides a policy for Player 2 which is the best among stationary policies
for problem (13).

Due to the duality of the LPea and DPea, we conclude that C∗ea = C∗
ea

and thus that (w1(ρ∗1), w
2(ρ∗2)) are a saddle point for (3). Indeed,

C∗ea = sup
u2∈U2

c (S)

inf
u1∈U1

c

Cea(β, u1, u2) ≤ sup
u2∈U2

c

inf
u1∈U1

c

Cea(β, u1, u2)

≤ inf
u1∈U1

c

sup
u2∈U2

c

Cea(β, u1, u2) ≤ inf
u1∈U1

c (S)
sup
u2∈U2

c

Cea(β, u1, u2) = Cea

which implies that all inequalities hold with equality.

4 The expected average cost: multichain case

Following [7,10], we introduce the class of policies Uk(1) which are all
policies u of player k for which the set Xk

ea(β
k, u) is a singleton. Define

Ũk(M∗) = Uk(1) ∩ Uk(M). We further define Uk(M∗) as the subset of
Ũk(M∗) of policies for which Puβk(Ikn = i, Akn = a) has a single limit. It fol-
lows from [7, Theorem 2] that the set of all occupation measures achieved
by strategies uk ∈ Uk(M∗) is equal to the set of all occupation measures
achieved by all policies.

Define Qk
eam,c(β

k) as the set of couples (ρ, z) satisfying

∑
(j,a)∈Kk

ρ(j, a)(δi(j)−Pk
jai) = 0, ∀i ∈ Ik∑

a∈Ak(i)

ρ(i, a) +
∑

(j,a)∈Kk

z(j, a)(δi(j)−Pk
jai) = βki , ∀i ∈ Ik

ρ(j, a) ≥ 0, z(j, a) ≥ 0 ∀(j, a) ∈ Kk∑
(j,a)∈Kk

ρ(j, a)dks(j, a) ≤ ξks , s = 1, ...,mk,

For the meaning of the new decision variable z, see [4]. For any policy
u ∈ Uk(M∗) of player k, the other player is faced with a CMDP for which
there exists an optimal policy within U l(M∗) (l 6= k) that can be computed
as in [7]. This follows from the same arguments as in the proof of [2, Theorem
2.8]. Thus, for a fixed u1 ∈ U1(M∗), the value of this CMDP is given by
that of the LP (8) with Qk

eam,c(β
k) replacing Qk

ea,c(β
k). Its dual is

Θ∗ea(u
1) := min

ψ2,φ2,λ2
< β2, ψ2 > −

m2∑
s=1

λ2
sξ

2
s subject to∑

`∈I2

(δj(`)−P2
jb`)ψ

2(`) ≥ 0, ∀(j, b) ∈ K2

φ2(j) + ψ2(j) ≥ c(u1; j, b)+ < λ2, d2(j, b) > +
∑
`∈I2

P2
jb`φ

2(`), ∀(j, b) ∈ K2

λ2
s ≤ 0, s = 1, . . . ,m2,



8 E. Altman, K. Avrachenkov, R. Marquez, G. Miller

where c(u1; j, b) is given in (9). To minimize Θ∗ea(u
1) over u1 ∈ U1

c (M∗), we
have to solve

LPeam(β) : C∗ea := min
ψ2,φ2,λ2,(ρ1,z1)∈Q1

ea,c(β
1)
< β2, ψ2 > −

m2∑
s=1

λ2
sξ

2
s s.t.∑

`∈I2

(δj(`)−P2
jb`)ψ

2(`) ≥ 0, ∀(j, b) ∈ K2

φ2(j) + ψ2(j) ≥
∑

(i,a)∈K1

ρ1(i, a)c(i, j, a, b)+ < λ2, d2(j, b) > +

∑
`∈I2

P2
jb`φ

2(`), ∀(j, b) ∈ K2

λ2
s ≤ 0, s = 1, . . . ,m2.

For any optimal solution of the above LP, one can obtain from the variables
(ρ1, z1) an optimal policy u1 ∈ U1(M∗) for player 1, as it is done in [7]. The
dual of the above LP then provides an optimal policy for player 2.

5 Examples in wireless communications

5.1 Example 1

We consider two mobile terminals and one base station. Mobile 1 seeks
to transmit information to the base station. Mobile 2 has an antagonistic
objective: to prevent or to jam the transmissions of mobile 1 to the base
station. We consider a discrete time model. At each slot n, mobile k trans-
mits a packet with power level pkn. The radio channel between mobile k and
the base station is characterized by a Markov chain Mk. The channel state
of both mobiles are independent. The channel state of a mobile determines
the power attenuation between the mobile and the base station. Denote
by hk(ζ) the attenuation of mobile k’s power when at state ζ ∈ Mk. The
throughput (the amount of bits per second) that mobile 1 can send to the
base station at a given slot n is given by

T (ζ1, ζ2, p1, p2) = B log2

(
1 +

p1h1(ζ1)
N0 + p2h2(ζ2)

)
(14)

where B is a channel bandwidth, ζ1, ζ2 are the channel states and p1, p2 are
the power levels. N0 is a constant that stands for the thermal noise power
at the receiver. The term pkhk(ζk) determines the power level received at
the base station from mobile k. The term p1h1(ζ1)

N0+p2h2(ζ2) is the ratio between
the power received at the base station from mobile 1 and the total power of
noise and interference. Eq. (14) is known as the Shannon capacity. It gives
the least upper bound of the transmission rate that can be achieved with
an error probability less than any ε > 0, if we assume that the interference
of player 2 at a slot is presented as a Gaussian white noise (this excludes
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the possibility of the receiver to decode the signal of Player 2 which, if
successful, would have allowed to subtract it from the noise experienced by
player 1).

Mobile k’s action set is given by a discrete set Powk, where Powk stands
for the transmission power and is given by a finite ordered set Powk =
(powk1 , ..., pow

k
ν ).

We assume that each mobile has a constraint on the power that it can
use. We see that our formalism of independent state processes can indeed be
used to model and solve this problem. In particular, the expected average
cost seems to be appropriate if the mobiles have constraints on the expected
average power consumption.

In example 1, no player controls the transitions. It might at first seem to
be a special case of the framework of [9,12] where only one player controls
the transitions and the other doesn’t. But in fact, the framework of [9,
12] is different from ours since in the former, both players have full state
information whereas in our framework, each player has its own information.

5.2 Numerical calculations for example 1

Let the radio channel between mobile k and the base station be characterized
by a Markov chain Mk with states ζi = 0, . . . , N , N = 10 and the following
transition probabilities:

P ki,i = P ki,i+1 = 1
2 , i = 0;

P ki,i = P ki,i−1 = P ki,i+1 = 1
3 , i = 2, . . . , N − 1;

P ki,i = P ki,i−1 = 1
2 i = N.

(15)

The transition probabilities (15) imply that at each slot the Markov chain
with the same probability does one of the following: preserves its state,
changes it to the next one or changes it to the previous one.

Each state of the Markov chain radio channel correspond to some level
of the power attenuation:

ζi 0 1 2 . . . 10
hk(ζi) 0.0 0.1 0.2 . . . 1.0

Let mobile k’s action set Powk be given by Powk = (0, ..., 10). The
exact power of the signal of the mobile k is Pkj = P0Powk

j , where P0 is
some base value of the power, and Powk

j is one of the elements of Powk.
For the noise power at the receiver we will assume that N0 = P0n0, where
we take n0 = 1. As the cost function depends only on the ratio between
the power received from the first mobile and the total power of noise and
interference of the second, we do not need to specify the exact value of the
base power P0.
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Let the expected average power consumption of both mobiles be con-
strained by the following bound:

Dk
ea(u

k) ≤ 5P0.

The immediate cost related to this constraint is

dk(ξki ,P
k
j ) = Pkj = P0Powk

j .

As the transition probabilities of both players do not depend on their strate-
gies, the problem is of unichain case and thus has a solution within station-
ary policies.

On fig. 1 one can see the supports of the optimal policies of both players.

Fig. 1 Supports of the optimal policies.

The exact values of the stationary policies wk(hk(ζi), powj) are the fol-
lowing:

w1(0, 0) = w1(0.1, 0) = w1(0.2, 0) = w1(0.4, 5) = w1(0.5, 6) =
= w1(0.6, 7) = w1(0.7, 8) = w1(0.8, 8) = w1(0.9, 9) = w1(1.0, 9) = 1,
w1(0.3, 2) = 1

3 , w1(0.3, 3) = 2
3;

w2(0, 0) = w2(0.1, 2) = w2(0.2, 5) = w2(0.3, 6) = w2(0.4, 6) =
= w2(0.5, 6) = w2(0.6, 6) = w2(0.7, 6) = w2(0.8, 6) = w2(1.0, 5) = 1,
w2(0.9, 5) = 2

3 , w2(0.9, 6) = 1
3 .
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The value of the expected average cost in this problem is C∗ea = C∗
ea =

0.9207.

5.3 Example 2

Let us consider the same statement as in example 1, but now we will presume
that if at time t, mobile k uses some power level then at time t+1 it can only
move to the neighboring states (increasing or decreasing the level by 1) or
stay at the same power level. This is compatible with the UMTS standard
for the 3rd generation cellular phones in Europe.

It then follows that the Mobile k’s state is thus given by a set Ik =
(Mk × Powk), where Mk stands for the channel state and Powk stands
for the present transmission power. The action set of mobile k at state
i = (ζk, powj) is Ak(i) = {−1, 0, 1} for 1 < j < ν where a = −1 results
in a decrease of the power level to powj−1, a = 0 means remaining at the
same power level, and a = 1 means increasing the power level to powj+1.
Moreover, for j = 1, Ak(i) = {0, 1} and for j = νk, Ak(i) = {−1, 0}.

In this case the CMDPs are not unichain anymore. Moreover, unlike the
previous example, here each mobile indeed controls also the state transitions
of his MDP.
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