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Abstract We consider optimal control problems for systems described by stochas-
tic differential equations with delay. We state conditions for certain classes of such
systems under which the stochastic control problems become finite-dimensional.
These conditions are illustrated with three applications. First, we solve some linear
quadratic problems with delay. Then we find the optimal consumption rate in a fi-
nancial market with delay. Finally, we solve explicitly a deterministic fluid problem
with delay which arises from admission control in ATM communication networks.

1 Introduction

In this paper we discuss stochastic control models which are driven by a stochastic
differential equation with delay, i.e. the dynamics of the controlled system do not
only depend on the current state but also on the states of the system during the
last d time units, where d > 0 describes a fixed delay. We are looking for a con-
trol process that maximizes the total expected reward that is earned by the system
during a finite time horizon. Stochastic control problems with delay arise in many
contexts. In Elsanosi et al. [2] or Larssen and Risebro [10] harvesting problems with
delayed dynamics are discussed. In Øksendal and Sulem [12] consumption and port-
folio optimization problems in financial markets with delay are considered, and in
Bauer [1] several applications from communication networks are taken into account.

Whereas it is well-known that the dynamic programming principle can be extended
to stochastic control problems with delay (see e.g. Kolmanovskĭı and Shăıkhet [7],
Gihman and Skorokhod [6] or Larssen [9]), most problems remain practically in-
tractable because they have infinite-dimensional state spaces. Therefore, in the ap-
plications mentioned, we restrict to a special dependence structure for the stochastic
delay differential equation in the following sense. The dynamics of the system may
depend on the current state, the state d time units earlier and some (sliding) aver-
age of the previous states. For such control problems the value function turns out
to be finite-dimensional so that it becomes much easier to solve these problems.
In Larssen and Risebro [10] general conditions for a class of control problems with
delay are given such that the value function is finite-dimensional.

In this paper we consider more general stochastic control problems with delay. In
section 2 the model under consideration is formulated. In section 3 we state condi-



2 Harald Bauer and Ulrich Rieder

tions which enable us to define a closely related finite-dimensional stochastic control
problem (without delay). The solution of this reduced control problem can then be
used to derive an optimal control and the value function of the original problem
with delay. In the following sections this procedure is illustrated with three different
examples. Section 4 covers some stochastic linear quadratic problems with delay.
In section 5 we solve an optimal consumption problem in a financial market with
delay. Finally, we shortly discuss the special case of deterministic control problems
with delay in section 6 and solve explicitly an admission control problem for a fluid
network with cross traffic.

2 The Stochastic Control Model with Delay

We consider a filtered probability space
(
Ω,F ,Ft,

� )
that satisfies the usual con-

ditions, i.e. the probability space is complete, F0 contains all
�

-null sets in F and
the filtration {Ft} is right continuous. Moreover, let W = {Wt, t ≥ 0} denote an
l-dimensional standard Brownian motion which is adapted to {Ft}. Assume that
the continuous stochastic process X = {Xt, t ≥ −d} taking values in a closed set
X ⊂ � n describes the state of a system at time t that started at time −d < 0. Here,
d describes a (constant) delay inherent to the system. Let CX[−d, 0] denote the
space of all continuous functions on [−d, 0] taking values in X. Then, the associated
segment process {ϕt, t ≥ 0} given by

ϕt(s) := Xt+s, s ∈ [−d, 0],

is a CX[−d, 0]-valued stochastic process. In this paper we consider systems whose
dynamics may depend not only on the current state but also on the segment process
through the processes

Yt :=

∫ 0

−d

eλsf(Xt+s)ds, ζt := f(Xt−d),

where f : � n → � k is continuously differentiable and λ ∈ � is a constant. The
system can be controlled by an Ft-adapted stochastic process π = {πt, t ≥ 0}
taking values in a closed subset U of � m. Under the control process π the system
evolves according to the stochastic delay differential state equation

{
dXt = µ1(t, Xt, Yt, πt) dt + µ2(Xt, Yt) · ζt dt + σ(t, Xt, Yt, πt) dWt, t ≥ 0,

Xt = ϕ(t) − d ≤ t ≤ 0,

with a given deterministic initial segment value ϕ ∈ CX[−d, 0] and drift functions

µ1 : � + × � n × � k × U → � n, µ2 : � n × � k → � (n,k),

as well as a volatility function

σ : � + × � n × � k × U → � (n,l).

We refer the reader to Mohammed [11] for results concerning the existence and
uniqueness of solutions for stochastic differential equations with delay.
At every time instant t, an immediate reward r(t, Xt, Yt, πt) is accrued and the
terminal state of the system earns a reward h(XT , YT ). Then we are looking for a
control process π that maximizes the overall expected reward over the horizon T .
More formally, for t ∈ [0, T ] we consider the family of stochastic control problems
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(P )





�
ϕ,π

[∫ T

t

r(s, Xs, Ys, πs) ds + h(XT , YT )
]

−→ max

dXs = µ1(s, Xs, Ys, πs) ds + µ2(Xs, Ys) · ζs ds + σ(s, Xs, Ys, πs) dWs, s ∈ [t, T ],

Xs = ϕ(s − t), t − d ≤ s ≤ t,

πs ∈ U, Xs ∈ X, s ∈ [t, T ].

Let t ∈ [0, T ] and ϕ ∈ CX[−d, 0] be given. Any {Fs}-progressively measurable
control process π : [t, T ] × Ω → U is called feasible if under π the stochastic delay
differential equation has a unique (strong) solution X taking values in X such that

�
ϕ,π

[∫ T

t

|r(s, Xs, Ys, πs)| ds + |h(XT , YT )|
]

< ∞.

The set of all feasible controls is denoted by U [t, T ]. Moreover, the value function
V of (P ) is defined by

V (t, ϕ) := sup
π∈U [t,T ]

�
ϕ,π

[∫ T

t

r(s, Xs, Ys, πs) ds + h(XT , YT )
]
.

A feasible control process π∗ ∈ U [t, T ] is called optimal for (t, ϕ) if

V (t, ϕ) =
�

ϕ,π∗

[∫ T

t

r(s, Xs, Ys, π
∗
s ) ds + h(XT , YT )

]
.

Note that the value function V is defined on the infinite-dimensional state space
CX[−d, 0] so that the stochastic maximum principle or the Hamilton-Jacobi-Bellman
theory are not directly applicable. In the next section we will formulate a family
of stochastic control problems with finite-dimensional state space such that the
corresponding value function gives an upper bound on V and moreover, an optimal
control process for (P ) can be constructed from an optimal solution of these finite-
dimensional stochastic control problems.

3 Reduction to a Finite-Dimensional Model

Considering the dynamics of the controlled system and the reward rates r and h,
it is tempting to conjecture that the value function V depends on the initial value
ϕ ∈ CX[−d, 0] only through

x(ϕ) := ϕ(0), y(ϕ) :=

∫ 0

−d

eλsf
(
ϕ(s)

)
ds, ζ(ϕ) := f

(
ϕ(−d)

)
.

But the dynamics of the process ζt depend on ϕt−d so that this conjecture cannot
hold without further assumptions. In order to reduce the stochastic control problem
with delay we introduce the following

Assumption (T ): (Transformation)

There exists a solution T : � n × � k → � n of the system of partial differential
equations

eλd · Tx(x, y) · µ2(x, y) − Ty(x, y) = 0, (x, y) ∈ � n × � k. (1)

Here, Tx, Ty denote the Jacobian of T with respect to x, y respectively, whereas Txx

is the Hessian of T with respect to x. This transformation yields a new state process

Zt := T (Xt, Yt).
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Let S := X × y
(
CX[−d, 0]

)
. Then Z takes values in T (S). In order to derive the

dynamics of the transformed process Z we need the following Itô formula.

Lemma 1 Let G ∈ C1,2,1 be given and consider a feasible control process π ∈ U [0, T ]
with associated state process X. Then the stochastic process G

(
t, Xt, Yt

)
solves

dG(t, Xt, Yt) =
{
Gt(t, Xt, Yt) + Gx(t, Xt, Yt) ·

(
µ1(t, Xt, Yt, πt) + µ2(Xt, Yt) · ζt

)

+
1

2
tr

(
Gxx(t, Xt, Yt) · σ(t, Xt, Yt, πt) σ(t, Xt, Yt, πt)

T
)}

dt

+ Gx(t, Xt, Yt) · σ(t, Xt, Yt, πt) dWt

+ Gy(t, Xt, Yt) ·
(
f(Xt) − e−λdζt − λYt

)
dt. (2)

Proof For a given feasible control process π with state process X we introduce

F (t) :=

∫ t

0

f(Xs)ds.

Then the process Y has the representation

Yt =

∫ 0

−d

eλsf(Xt+s)ds = eλsF (t + s)
∣∣∣
0

−d
−

∫ 0

−d

λeλsF (t + s)ds

= F (t) − e−λdF (t − d) −

∫ 0

−d

λeλsF (t + s)ds.

In particular, Y has finite variation so that

dYt =
(
f(Xt) − e−λdf(Xt−d) − λYt

)
dt =

(
f(Xt) − e−λdζt − λYt

)
dt. (3)

Applying the multidimensional Itô formula to G(t, Xt, Yt) the representation (2)
follows. ut

Now we are able to derive the dynamics for the components of Z by using (1).

dZi
t = dT i(Xt, Yt) =

{
T i

x(Xt, Yt) ·
(
µ1(t, Xt, Yt, πt) + µ2(Xt, Yt) · ζt

)

+
1

2
tr

(
T i

xx(Xt, Yt) · σ(t, Xt, Yt, πt) σ(t, Xt, Yt, πt)
T
)}

dt

+ T i
x(Xt, Yt) · σ(t, Xt, Yt, πt) dWt

+ T i
y(Xt, Yt) ·

(
f(Xt) − e−λdζt − λYt

)
dt

= T i
x(Xt, Yt) · µ1(t, Xt, Yt, πt) dt + T i

y(Xt, Yt) ·
(
f(Xt) − λYt

)
dt

+
1

2
tr

(
T i

xx(Xt, Yt) · σ(t, Xt, Yt, πt) σ(t, Xt, Yt, πt)
T
)

dt

+ T i
x(Xt, Yt) · σ(t, Xt, Yt, πt) dWt, i = 1, . . . , n. (4)

Hence, the drift function µ̃ : � + × � n × � k ×U → � n for the process Z is given by

µ̃i(t, x, y, u) := T i
x(x, y) · µ1(t, x, y, u) + T i

y(x, y) ·
(
f(x) − λy

)

+
1

2
tr

(
T i

xx(x, y) · σ(t, x, y, u) σ(t, x, y, u)T
)
, i = 1, . . . , n,

whereas the corresponding volatility function σ̃ : � + × � n × � k × U → � (n,l) has
the representation

σ̃i(t, x, y, u) := T i
x(x, y) · σ(t, x, y, u), i = 1, . . . , n.
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If these functions as well as the rewards would depend on (x, y) through T (x, y) only,
then (P ) could be reduced to a family of finite-dimensional problems. This yields the

Assumption (R): (Reduction)

There are functions

µ : � + × � n × U → � n, σ : � + × � n × U → � (n,l),

r : � + × � n × U → � , h : � n → � ,

such that for all t ∈ [0, T ], u ∈ U, (x, y) ∈ � n × � k

µ
(
t, T (x, y), u

)
= µ̃

(
t, x, y, u

)
, σ

(
t, T (x, y), u

)
= σ̃(t, x, y, u),

r
(
t, T (x, y), u

)
= r(t, x, y, u), h

(
T (x, y)

)
= h(x, y).

Now we can introduce a family of finite-dimensional control problems (P ) associated
to (P ) via the transformation T . Let ϕ ∈ CX[−d, 0] be an initial value for problem
(P ) and define z := T (x(ϕ), y(ϕ)) ∈ T (S). Then for t ∈ [0, T ] we consider the
stochastic control problems

(
P

)






�
z,π

[∫ T

t

r(s, Zs, πs) ds + h(ZT )
]

−→ max

dZs = µ(s, Zs, πs) ds + σ(s, Zs, πs) dWs, s ∈ [t, T ],

Zt = z,

πs ∈ U, Zs ∈ T (S), s ∈ [t, T ].

The set U [t, T ] of feasible controls for
(
P

)
is defined analogously to U [t, T ] and the

value function V of (P ) is given by

V (t, z) := sup
π∈U[t,T ]

�
z,π

[∫ T

t

r(s, Zs, πs) ds + h(ZT )
]
.

The stochastic control problem (P ) has a finite-dimensional state space. Problems
of this kind are well-studied in the literature (see e.g. Fleming and Soner [5], or
Yong and Zhou [13]). In these references verification theorems are provided, which
are based on the Hamilton-Jacobi-Bellman equation. To formulate this equation we
introduce for any function v(t, z) ∈ C1,2 the so-called Hamiltonian

H
(
t, z, u, vz, vzz

)
:= r(t, z, u)+vz(t, z)·µ(t, z, u)+

1

2
tr

(
vzz(t, z)·σ(t, z, u)σ(t, z, u)T

)
.

Then, the partial differential equation
{

vt(t, z) + supu∈U H
(
t, z, u, vz, vzz

)
= 0, (t, z) ∈ [0, T ]× T (S),

v(T, z) = h(z), z ∈ T (S),

is called the Hamilton-Jacobi-Bellman (HJB) equation for (P ). The aforementioned
references use slightly varying conditions on the drift and volatility functions µ, σ

as well as on the reward functions r, h to derive verification results. In order to give
a unified treatment we refrain from choosing one specific set of conditions for

(
P

)
.

Instead, we say that
(
P

)
satisfies the verification principle if for any initial value

(t, z) ∈ [0, T ] × T (S) and any progressively measurable control process the state
equation has a unique (strong) solution and if any solution v ∈ C1,2 of the HJB
equation has the following properties:
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i) v(t, z) ≥ V (t, z) ∀ (t, z) ∈ [0, T ]× T (S).
ii) Let (t, z) ∈ � + × T (S). If there exists a control process π∗ ∈ U [t, T ] with state

process Z∗ such that

π∗
s ∈ arg max

u∈U

H
(
s, Z∗

s , u, vz(s, Z
∗
s ), vzz(s, Z

∗
s )

)

for all s ∈ [t, T ], then π∗ is optimal for (t, z) and

V
(
s, Z∗

s

)
= v

(
s, Z∗

s

)
, s ∈ [t, T ].

By using the verification principle for
(
P

)
we are able to state the main result of

this paper.

Theorem 1 Suppose that Assumptions (T ), (R) hold and that
(
P

)
satisfies the ver-

ification principle. Let v ∈ C1,2 be a solution of the HJB equation. Then

a) v(t, z) ≥ V (t, ϕ) for all ϕ ∈ CX[−d, 0], z := T
(
x(ϕ), y(ϕ)

)
, t ∈ [0, T ].

b) Let (t, ϕ) ∈ [0, T ] × CX[−d, 0]. If there exists a control process π∗ ∈ U [t, T ] with
state process X∗ such that

π∗
s ∈ argmax

u∈U

H
(
s, T (X∗

s , Y ∗
s ), u, vz

(
s, T (X∗

s , Y ∗
s )

)
, vzz

(
s, T (X∗

s , Y ∗
s )

))
(5)

for all s ∈ [t, T ], then π∗ is optimal for (P ) with initial value (t, ϕ) and π∗ is
also optimal for (P ) with initial value (t, z), z := T

(
x(ϕ), y(ϕ)

)
and moreover,

V (s, ϕ∗
s) = V

(
s, T (X∗

s , Y ∗
s )

)
= v

(
s, T (X∗

s , Y ∗
s )

)
, s ∈ [t, T ].

Proof a) Fix t ∈ [0, T ], ϕ ∈ CX[−d, 0] and let π ∈ U [t, T ] be a feasible control
process with state process X. Due to the Assumptions (T ), (R) the process
Zs = T (Xs, Ys) is the unique (strong) solution of the state equation for problem
(P ) with initial value z = T

(
x(ϕ), y(ϕ)

)
at time t, because (P ) satisfies the

verification principle. Moreover, Z takes values in T (S) so that π ∈ U [t, T ] holds.
Hence, we conclude

v(t, z) ≥ V (t, z) ≥ � z,π

[∫ T

t

r(s, Zs, πs) ds + h(ZT )
]

= � ϕ,π

[∫ T

t

r(s, Xs, Ys, πs) ds + h(XT , YT )
]
.

Since π ∈ U [t, T ] was chosen arbitrary, the desired inequality follows.
b) For (t, ϕ) ∈ [0, T ] × CX[−d, 0] let π∗ ∈ U [t, T ] be a control process and let X∗

be the associated state process such that

π∗
s ∈ argmax

u∈U

H
(
s, T (X∗

s , Y ∗
s ), u, vz

(
s, T (X∗

s , Y ∗
s )

)
, vzz

(
s, T (X∗

s , Y ∗
s )

))

for all s ∈ [t, T ]. Under the transformation Z∗
s = T (X∗

s , Y ∗
s ) this becomes

π∗
s ∈ argmax

u∈U

H
(
s, Z∗

s , u, vz(s, Z
∗
s ), vzz(s, Z

∗
s )

)
.

Since π∗ is also feasible for
(
P

)
with initial value z = T

(
x(ϕ), y(ϕ)

)
at time

t and
(
P

)
satisfies the verification principle, π∗ is optimal for (P ) with initial

value (t, z) and

V (t, z) = v(t, z).
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In particular, we conclude from a)

v(t, z) = 	 z,π

[∫ T

t

r(s, Z∗
s , π∗

s ) ds + h(Z∗
T )

]

= 	 ϕ,π

[∫ T

t

r(s, X∗
s , Y ∗

s , πs) ds + h(X∗
T , Y ∗

T )
]

≥ V (t, ϕ).

On the other hand, π∗ is feasible for (P ) so that

	 ϕ,π

[∫ T

t

r(s, X∗
s , Y ∗

s , πs) ds + h(X∗
T , Y ∗

T )
]
≤ V (t, ϕ).

Therefore π∗ is optimal for (P ) with initial value (t, ϕ). Replacing (t, z) by (s, Z∗
s )

in the above argument, we obtain the remaining statements.

Remark From the proof of part a) it follows that

V (t, ϕ) ≤ V (t, z), z := T
(
x(ϕ), y(ϕ)

)
, t ∈ [0, T ], ϕ ∈ CX[−d, 0],

i.e. the value function of (P ) is an upper bound of the value function of (P ).

Often, the optimal control process obtained from (5) can be described in feedback
form. Let π : [0, T ]× T (S) → U be a function with

π(t, z) ∈ arg max
u∈U

H
(
t, z, u, vz(t, z), vzz(t, z)

)

and define for (t, ϕ) ∈ [0, T ]× CX[−d, 0] the function

π̃(t, ϕ) := π
(
t, T

(
x(ϕ), y(ϕ)

))
.

As an immediate consequence of Theorem 1 we get the following

Corollary 1 If the stochastic delay differential equation





dXs = µ1

(
s, Xs, Ys, π̃(s, ϕs)

)
ds + µ2(Xs, Ys) · ζs ds

+σ
(
s, Xs, Ys, π̃(s, ϕs)

)
dWs, s ∈ [t, T ],

Xs = ϕ(s − t), t − d ≤ s ≤ t,

has a unique solution X∗ with segment process ϕ∗ for some given initial value
(t, ϕ) ∈ [0, T ]× CX[−d, 0], then

V (s, ϕ∗
s) = V

(
s, T (X∗

s , Y ∗
s )

)
, s ∈ [t, T ].

Moreover, the optimal control process for problem (P ) with initial value (t, ϕ) can
be given in feedback form

π∗
s = π̃(s, ϕ∗

s), s ∈ [t, T ].

Proof Let the initial value (t, ϕ) be given and consider the corresponding solution
X∗ of the stochastic delay differential equation. Then π∗ ∈ U [t, T ] and the state-
ments follow directly from Theorem 1. ut

Remarks 1) Let X∗ be the optimal state process for some initial value (0, ϕ0) with
segment process ϕ∗. Then the value function V (t, ϕ∗

t ) and the optimal feedback
control process π∗

t = π̃(t, ϕ∗
t ) depend on ϕ∗

t only through

X∗
t and Y ∗

t =

∫ 0

−d

eλsf(X∗
t+s) ds.

Note that V (t, ϕ∗
t ) and π∗

t are independent of ζ∗t := f(X∗
t−d).

2) In many applications the set of feasible control processes is restricted to some
subset of Lp. Then we are able to relax the verification principle to hold for this
subclass of control processes and Theorem 1 as well as Corollary 1 are still valid.
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4 Stochastic Linear Quadratic Problems with Delay

Stochastic linear quadratic problems (LQ problems) constitute a class of optimiza-
tion problems which were extensively studied in the literature (see e.g. Yong and
Zhou [13]). In this section, we apply the verification technique from the last sec-
tion to study a delayed version. LQ problems with delay were first investigated by
Kolmanovskĭı et al. (see [7] and references therein). Assume that f(x) = x and let
A1(t), A2(t), Q(t) ∈ 
 (n,n), B(t) ∈ 
 (n,m), R(t) ∈ 
 (m,m) be (deterministic) matrix
valued functions in L∞[0, T ]. Moreover, let σ(t) ∈ 
 (n,l) be a (deterministic) matrix
valued function in L2[0, T ] and let A3 ∈ 
 (n,n), G ∈ 
 (m,m) be given. In addition,
we assume that Q(t), G are positive semi-definite and R(t) is positive definite for
all t ∈ [0, T ] and continuous on [0, T ]. Then the stochastic LQ problem with delay
can be stated as

(LQ)





�
ϕ,π

[∫ T

t

(
Xs + eλdA3Ys

)T
Q(s)

(
Xs + eλdA3Ys

)
+ πT

s R(s)πs ds

+
(
XT + eλdA3YT

)T
G

(
XT + eλdA3YT

)]
−→ max

dXs =
(
A1(s)Xs + A2(s)Ys + A3ζs + B(s)πs

)
ds + σ(s) dWs, s ∈ [t, T ],

Xs = ϕ(s − t), t − d ≤ s ≤ t,

πs ∈ 
 m, s ∈ [t, T ],

where ϕ ∈ C � n [−d, 0] is a given initial segment. We restrict the set of feasible
controls U [t, T ] to all progressively measurable processes π with values in 
 m such
that π ∈ L2

(
Ω × [0, T ]

)
. If we set

µ1(t, x, y, u) := A1(t)x + A2(t)y + B(t)u,

µ2(x, y) := A3,

r(t, x, y, u) := (x + eλdA3y)T Q(t)(x + eλdA3y) + uT R(t)u,

h(x, y) := (x + eλdA3y)T G(x + eλdA3y),

then (LQ) is a special case of (P ). In order to apply Theorem 1 we have to check
whether Assumptions (T ), (R) are satisfied. Note that the partial differential equa-
tion (1) reads

eλd · Tx(x, y) · A3 − Ty(x, y) = 0.

If A3 = 0, then T (x, y) depends on x only and Assumption (R) can only hold if
A2(t) ≡ 0 so that the problem reduces to the classical LQ problem without delay.
Hence, we assume A3 6= 0. Obviously, T (x, y) := x+eλdA3y solves (1). This implies

µ̃(t, x, y, u) = A1(t)x + A2(t)y + B(t)u + eλdA3

(
x − λy

)

=
(
A1(t) + eλdA3

)(
T (x, y) − eλdA3y

)
+

(
A2(t) − λeλdA3

)
y + B(t)u,

r(t, x, y, u) = T (x, y)T Q(t)T (x, y) + uT R(t)u,

h(x, y) = T (x, y)T GT (x, y).

Therefore, Assumption (R) is satisfied if and only if

A2(t) = eλd
(
λEn + A1(t) + eλdA3

)
A3. (6)

The reduced finite-dimensional stochastic control problem becomes
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(LQ)







z,π

[∫ T

t

ZT
s Q(s)Zs + πT

s R(s)πs ds + ZT
T GZT

]
−→ max

dZs =
(
(A1(s) + eλdA3)Zs + B(s)πs

)
ds + σ(s) dWs, s ∈ [t, T ],

Zt = z,

πs ∈ � m, s ∈ [t, T ],

where z := T
(
x(ϕ), y(ϕ)

)
∈ � n. In Yong and Zhou [13, Chapter 6] it is shown

that (LQ) satisfies the verification principle and the optimal control is given by the
feedback function

π(t, z) := −R−1(t)B(t)T P (t)z,

where P (t) is a solution of the Riccati equation





Ṗ (t) = P (t)B(t)R−1(t)B(t)T P (t) −
(
A1(t) + eλdA3

)
P (t)

−P (t)
(
A1(t) + eλdA3

)T
− Q(t),

P (T ) = G.

(7)

Moreover, the value function V has the representation

V (t, z) = zT P (t)z +

∫ T

t

tr
(
σ(s)σ(s)T

)
P (s) ds.

Let X∗, Y ∗ be the unique solution of

dXt =
((

A1(t) − B(t)R−1(t)B(t)T P (t)
)
Xt +

(
A2(t) − eλdB(t)R−1(t)B(t)T P (t)A3

)
Yt

+ A3Xt−d

)
dt + σ(t) dWt, t ∈ [0, T ],

Xt = ϕ(t), −d ≤ t ≤ 0,

Yt =

∫ 0

−d

eλsXt+s ds, t ∈ [0, T ].

From this we can directly derive the solution of the LQ problem with delay.

Theorem 2 Consider the stochastic control problem (LQ) with A3 6= 0 and assume
that (6) holds. Then the value function V of (LQ) is given by

V (t, ϕ∗
t ) =

(
Z∗

t

)T
P (t)Z∗

t +

∫ T

t

tr
(
σ(s)σ(s)T

)
P (s) ds

and the optimal control process is given by

π∗
t = −R−1(t)B(t)T P (t)Z∗

t ,

where Z∗
t := X∗

t + eλdA3Y
∗
t and P (t) solves the Riccati equation (7).
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5 Optimal Consumption in a Financial Market with Delayed Dynamics

In this section we study a problem of utility maximization from consumption and
terminal wealth. We consider an investor whose wealth process follows a stochastic
delay differential equation. During the time interval [0, T ] the investor consumes
from his wealth according to the consumption process ct ≥ 0 so that his current
wealth Xt is described by

{
dXt =

(
µ(t, Xt, Yt) + aζt − ct

)
dt + σ(t, Xt, Yt) dWt, t ≥ 0,

Xt = ϕ(t), −d ≤ t ≤ 0,

with a ∈ [0,∞). Here we assume that f(x) = x. Consumption at rate c yields the
utility U1(c) := 1

α
cα, α ∈ (0, 1) which is discounted at rate β ≥ 0, whereas the

terminal utility is defined by U2(z) = 1
α
zα. Hence, the investor is faced with the

following stochastic consumption problem with delay.

(C)






�
ϕ,π

[∫ T

t

e−βsU1(cs) ds + U2(XT + aeλdYT )
]

−→ max

dXs =
(
µ(s, Xs, Ys) + aζs − cs

)
ds + σ(s, Xs, Ys) dWs, s ∈ [t, T ],

Xs = ϕ(s − t), t − d ≤ s ≤ t,

cs ≥ 0, Xs ≥ 0, s ∈ [t, T ],

where ϕ ∈ C �
+
[−d, 0] is a given initial segment. The set of feasible controls U [t, T ]

consists of those consumption processes c with
∫ T

t
cs ds < ∞, P − a.s and X ≥ 0.

Obviously, (C) is a special case of (P ). The partial differential equation (1) reads

aeλd · Tx(x, y) − Ty(x, y) = 0.

As in the last section, this problem reduces to the classical consumption problem
(without delay) if a = 0. Hence, we assume here a > 0. Then T (x, y) := x + aeλdy

solves (1). This yields

µ̃(t, x, y, c) = µ(t, x, y) − c + aeλd(x − λy),

σ̃(t, x, y, c) = σ(t, x, y),

r(t, x, y, c) = e−βtU1(c),

h(x, y) = U2

(
T (x, y)

)
.

Choosing Cauchy data µ(t, x, 0) := µt · x and σ(t, x, 0) = σt · x for some continuous
functions µt, σt > 0, we obtain by the method of characteristic curves in view of
Assumption (R)

µ(t, x, y) = aeλd
(
aeλd + λ

)
y + µtT (x, y), σ(t, x, y) = σtT (x, y). (8)

If we define µt := µt +aeλd, then the reduced finite-dimensional consumption prob-
lem becomes

(C)






�
z,π

[∫ T

t

e−βsU1(cs) ds + U2(ZT )
]

−→ max

dZs =
(
µsZs − cs

)
ds + σsZs dWs, s ∈ [t, T ],

Zt = z,

cs ≥ 0, Zs ≥ 0, s ∈ [t, T ],
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where z := T
(
x(ϕ), y(ϕ)

)
∈ � +. In Korn and Korn [8] it is shown that (C) satisfies

the verification principle and the optimal consumption process can be given in
feedback form

c(t, z) := e−
βt

1−α ·
z

g(t)

where g(t) is a positive solution of the differential equation

ġ(t) = a1(t) · g(t) + a2(t), g(T ) = 1 (9)

with

a1(t) := −
1

2

µ2
t

(1 − α)2
(σtσ

T
t )−1 and a2(t) := −

1

α
e−

βt
1−α .

Moreover, the value function V has the representation

V (t, z) =
1

α
g(t)1−αzα.

Let X∗, Y ∗ be the unique solution of

dXt =
(
µ(t, Xt, Yt) + aXt−d − e−

βt
1−α ·

1

g(t)

(
Xt + aeλdYt)

)
dt

+ σ(t, Xt, Yt) dWt, t ∈ [0, T ],

Xt = ϕ(t), −d ≤ t ≤ 0,

Yt =

∫ 0

−d

eλsXt+s ds, t ∈ [0, T ].

By using Theorem 1 we can directly state the solution of the consumption problem
with delay.

Theorem 3 Consider the optimal consumption problem (C) with a > 0 and assume
that (8) holds. Then the value function V of (C) is given by

V (t, ϕ∗
t ) =

1

α
g(t)1−αZ∗

t

and the optimal consumption process is given by

c∗t = e−
βt

1−α
1

g(t)
· Z∗

t ,

where Z∗
t := X∗

t + aeλdY ∗
t and g(t) is a positive solution of (9).

The special case a = −λe−λd and λ < 0 was treated by Elsanousi and Larssen [3].

6 Deterministic Control Problems with Delay

One important subclass of problems consists of deterministic control problems with
delay, i.e. σ ≡ 0. In this case, problem (P ) reduces to the following deterministic
control problem






∫ T

t

r
(
s, x(s), y(s), πs

)
ds + h

(
x(T ), y(T )

)
−→ max

ẋ(s) = µ1

(
s, x(s), y(s), πs

)
+ µ2

(
x(s), y(s)

)
· ζ(s), s ∈ [t, T ],

x(s) = ϕ(s − t), t − d ≤ s ≤ t,

πs ∈ U, x(s) ∈ X, s ∈ [t, T ],



12 Harald Bauer and Ulrich Rieder

where ϕ ∈ CX[−d, 0] is a given initial segment. Under Assumption (T ) the dynamics
of the transformed state z(s) = T

(
x(s), y(s)

)
are given by

ż(s) = Tx

(
x(s), y(s)

)
· µ1

(
s, x(s), y(s), πs

)
+ Ty

(
x(s), y(s)

)
·
(
f(x(s)) − λy(s)

)

= µ̃
(
s, x(s), y(s), πs

)

Under Assumption (R) we obtain for any initial value ϕ ∈ CX[−d, 0] and z :=
T

(
x(ϕ), y(ϕ)

)
the reduced finite-dimensional control problem





∫ T

t

r
(
s, z(s), πs

)
ds + h

(
z(T )

)
−→ max

ż(s) = µ
(
s, z(s), πs

)
, s ∈ [t, T ],

z(t) = z,

πs ∈ U, z(s) ∈ T (S), s ∈ [t, T ].

In this case the Hamiltonian has the form

H(t, z, u, vz) = r(t, z, u) + vz(t, z) · µ(t, z, u).

To exemplify the use of Theorem 1 in the deterministic setting, let us consider an
example of congestion control which is motivated by ATM communication networks
where several users can connect to the network over the same User Network Inter-
face. Every user submits ATM cells which are collected in a common buffer and
transmitted in FIFO discipline. In order to prevent congestion or excessive trans-
mission delay, some control must be exerted. The most common form of congestion
control is given by access control. In Fendick and Rodrigues [4], such a model is
studied under cross traffic, i.e. in addition to the controlled arrival stream there
is an uncontrolled stream which utilizes some of the available bandwidth. In their
model the cross traffic is described by a Brownian motion, whereas the controlled
arrival stream is modeled as fluid. We will discuss a model where the cross traffic
is described by a fluid stream as well.

Consider a fluid model with 2 different arrival streams sending fluid to one infinite
buffer from which it is fed into a network. Assume that fluid can be pumped into
the network at a maximal rate of µ and that the state x(t) of the system at time t

describes the current buffer level. In this example we set f(x) := 1
d
e−x and λ = 0.

Hence y(t) = 1
d

∫ 0

−d
e−x(t+s)ds represents an exponential mean of the (negative)

states over the last d time units taking values in (0, 1], whereas ζ(t) = f(x(t − d))
gives the scaled exponential (negative) state d time units earlier.
The rate at which the first traffic source pumps fluid into the buffer follows a self
adaptation scheme, i.e. the arrival rate α1(x, y) varies with the current state as well
as with past states.
The second traffic source also follows a self adaptation scheme. Here, the arrival
rate is described by α0(x, y) + aζ, a ∈ � depending explicitly on the buffer level d

time units earlier. The use of the special function f(x) = 1
d
e−x signifies that the

rates adapt fast to significant changes in the buffer level.

The buffer level can be controlled by admitting only a fraction u1 ∈ [0, 1] of the
incoming fluid from source one and by utilizing only a fraction u2 ∈ [0, 1] of the
network capacity µ > 0. We impose linear holding costs c(x+ay), c > 0. Moreover,
a reward at rate r > 0 is gained whenever fluid from stream one is admitted to the
system. More precisely, we consider the overall reward rate

r
(
t, x, y, u1, u2

)
= −c

(
x + ay

)
+ ru1.
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Hence, our deterministic admission control problem with delay is given by

(AC)






∫ T

t

[
−c

(
x(s) + ay(s)

)
+ ru1(s)

]
ds −→ max

ẋ(s) = α1

(
x(s), y(s)

)
u1(s) + α0

(
x(s), y(s)

)
+ aζs − µu2(s), s ∈ [t, T ],

x(s) = ϕ(s − t), t − d ≤ s ≤ t,

πs =
(
u1(s), u2(s)

)
∈ [0, 1]2, x(s) ≥ 0, s ∈ [t, T ]

where ϕ ∈ C �
+
[−d, 0] is a given initial segment and a ∈ � . For this deterministic

control problem the partial differential equation (1) has the form

a · Tx(x, y) − Ty(x, y) = 0.

A solution is given by T (x, y) := x + ay. This implies

µ̃(t, x, y, u1, u2) = α1(x, y)u1 + α0(x, y) − µu2 + af(x),

r(t, x, y, u) = −cT (x, y) + ru1,

h(x, y) = 0.

In view of (R), we assume α1(x, y) = α1

(
T (x, y)

)
for some function α1 : � → � +

and for α0(x, 0) := µ(1 + e−x) we obtain

α0(x, y) = −
a

d
e−x + µ

(
1+

(
1 +

a

µd

)
e−(x+ay)

)
.

Now we fix a := −µd. Then α0 simplifies to α0(x, y) = µ+µe−x. Hence, Assumption
(R) is satisfied if we choose

a = −µd, α1(x, y) :=
(
−

α

µd
(x − µdy)

)+
, α0(x, y) = µ + µe−x (10)

for some α > 0. The reduced finite-dimensional admission control problem has now
the form

(AC)





∫ T

t

[
−cz(s) + ru1(s)

]
ds −→ max

ż(s) =
(
−

α

µd
z(s)

)+
u1(s) + µ(1 − u2(s)), s ∈ [t, T ],

z(t) = z,

πs =
(
u1(s), u2(s)

)
∈ [0, 1]2, z(s) ≥ −µd, s ∈ [t, T ],
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where z ∈ [−µd,∞). In Bauer [1] it is shown that problem (AC) satisfies the
verification principle and the optimal solution can be described in the following
way. Let z ∈ [−µd,∞) and define the switching time t∗(z) by

t∗(z) :=





0 z ≥ − r

c
,(

T + µd
α

ln
(
1 + r

cz

))+

z < − r
c
.

Then the optimal control for (AC) with initial value (0, z) is given by u∗
2(t) ≡ 1 and

u∗
1(t) =

{
0 t ≤ t∗(z), z ≤ 0,

1 else.

The value function for (AC) has the representation

V (t, z) =






(r − cz)(T − t) z > 0,

r(T − t) − cµd
α

z
(
1 − e−

α
µd

(T−t)
)

t ≥ t∗(z), z ≤ 0,
µdr
α

− cz(T − t) − (r + cz)µd
α

ln
(
1 + r

cz

)
t < t∗(z), z ≤ 0.

Let x∗, y∗ be the unique solution of

ẋ(t) =
(
−

α

µd

(
x(t) − µdy(t)

))+

u∗
1(t) + µ

(
e−x(t) − e−x(t−d)

)
, t ∈ [0, T ],

x(t) = ϕ(t), −d ≤ t ≤ 0,

y(t) =

∫ 0

−d

1

d
e−x(t+s) ds, t ∈ [0, T ].

Theorem 1 yields directly the solution of the admission control problem (AC).

Theorem 4 Consider the problem (AC) and assume that (10) holds. Then:

a) The value function of (AC) is given by

V (t, ϕ∗
t ) =





(
r − z∗(t)

)
(T − t) z∗(t) > 0,

r(T − t) − cµd
α

z∗(t)
(
1 − e−

α
µd

(T−t)
)

t ≥ t∗
(
z∗(t)

)
, z∗(t) ≤ 0,

µdr
α

− cz∗(t)(T − t)

−
(
r + cz∗(t)

)
µd
α

ln
(
1 + r

cz∗(t)

)
t < t∗

(
z∗(t)

)
, z∗(t) ≤ 0,

where z∗(t) = x∗(t) − µdy∗(t).
b) The optimal control process for (AC) with initial value (0, ϕ0) has the form

u∗
2(t) ≡ 1 and u∗

1(t) =

{
0 t ≤ t∗

(
z(ϕ0)

)
, z(ϕ0) ≤ 0,

1 else,

where z(ϕ0) := x(0) − µdy(0).
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7. V. B. Kolmanovskĭı and L. E. Shăıkhet. Control of Systems with Aftereffect, vol-
ume 157 of Translation of Mathematical Monographs. American Mathematical
Society, Providence, Rhode Island, 1996.

8. R. Korn and E. Korn. Optionsbewertung und Portfolio-Optimierung - Moderne
Methoden der Finanzmathematik. Vieweg, 1999.

9. B. Larssen. Dynamic Programming in Stochastic Control of Systems with Delay.
Stochastics and Stochastics Reports, 74(3-4):651–673, 2002.

10. B. Larssen and N. H. Risebro. When are HJB-Equations for Control Problems
with Stochastic Delay Equations Finite Dimensional? Stochastic Analysis and
Applications, 21(3):643–671, 2003.

11. S. E. Mohammed. Stochastic Functional Differential Equations. Pitman,
Boston, 1984.

12. B. Øksendal and A. Sulem. A Maximum Principle for Optimal Control of
Stochastic Systems with Delay, with Applications to Finance. In J. M. Menaldi,
E. Rofman, and A. Sulem, editors, Optimal Control and Partial Differential
Equations, pages 64–79. IOS Press, Amsterdam, 2001.

13. J. Yong and X. Y. Zhou. Stochastic Controls. Springer-Verlag, New York, 1999.


