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Abstract We consider stationary Poisson line processes in the Euclidean
plane and analyze properties of Voronoi tessellations induced by Poisson
point processes on these lines. In particular, we describe and test an algo-
rithm for the simulation of typical cells of this class of Cox–Voronoi tes-
sellations. Using random testing, we validate our algorithm by comparing
theoretical values of functionals of the zero cell to simulated values ob-
tained by our algorithm. Finally, we analyze geometric properties of the
typical Cox–Voronoi cell and compare them to properties of the typical
cell of other well–known classes of tessellations, especially Poisson–Voronoi
tessellations. Our results can be applied to stochastic–geometric modelling
of networks in telecommunication and life sciences, for example. The lines
can then represent roads in urban road systems, blood arteries or filament
structures in biological tissues or cells, while the points can be locations of
telecommunication equipment or vesicles, respectively.
Key words : Stochastic geometry, Random tessellation, Typical cell, Shape
analysis, Network, Random software testing
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1 Introduction

The Voronoi tessellation is one of the most popular model for subdividing
the Euclidean plane into convex and compact subsets. These subsets, called
Voronoi cells, are polygons constructed according to the nearest neighbor
principle with respect to a set of nuclei. Applications of such tessellation
models arise in numerous fields, e.g. in economics, biology, and telecommu-
nication; see Okabe et al. [11] and the references therein.
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A special, but important class of Voronoi tessellations are so–called
Poisson–Voronoi tessellations (PVT), which are obtained if the nuclei are
realizations of (homogeneous) Poisson point processes. The principle of ho-
mogeneity (or, in other words, stationarity) of the generating point process
is often modified to suit application purposes; see e.g. Błaszczyszyn and
Schott [2], Okabe et al. [11]. For example in the context of telecommuni-
cation or life sciences, one considers models where the points are no longer
randomly scattered in the whole plane but are situated on lines which them-
selves can be randomly distributed. In telecommunication the lines could
represent roads in urban road systems while the points are locations of
telecommunication equipment or cars; see e.g. Gloaguen et al. [4,5]. In life
sciences the lines could represent blood arteries or filament structures in
biologic tissues or cells; see e.g. Schütz [13] and the references therein.

In the present paper, we consider configurations of lines induced by
stationary Poisson line processes and we analyze Voronoi tessellations whose
nuclei form (inhomogenous) Poisson point processes on the lines. We call
such a division of the plane a Cox–Voronoi tessellation (CVT) since its
nuclei are realizations of doubly stochastic Poisson point processes, which
are also called Cox processes by some authors. By means of CVT, the spatial
structure of the underlying Cox processes can be investigated. Furthermore,
in the context of telecommunication, the cells of CVT can be seen as serving
zones of their respective nuclei.

Important properties of stationary CVT can be comprehended by their
typical cell, which is, roughly speaking, the cell drawn uniformly out of the
set of all possible cells. Using dictions of Palm theory, the typical cell can be
thought of as the cell that contains the origin under the condition that the
underlying Cox process has a point at the origin. We show how this Palm
principle can be applied to develop an efficient algorithm for the simulation
of the typical cell of CVT. Since only very few analytical formulae are known
for CVT, simulation of the typical Cox–Voronoi cell is useful in order to
get knowledge about first–order and second–order moments and especially
about distributional properties of certain cell characteristics like the number
of vertices, the area, or the perimeter. This knowledge can be applied, for
example, in modelling of telecommunication networks to perform effective
cost analyzes with respect to serving zones of telecommunication equipment.

The developed algorithm must of course be validated, where the valida-
tion can be seen from different viewpoints: from the perspectives of math-
ematical statistics and computer science, respectively. Since the output of
our algorithm is random, tests designed for randomized software are ap-
plied. Over the last decades an enormous amount of literature dealing with
methods for testing software in a general meaning has been published; see
e.g. Binder [1] and Sneed [14]. However, the testing of software with random
input or random output has been almost completely neglected. Therefore
publications concerning this topic are very scarce; see e.g. Mayer and Gud-
erlei [8]. Hence, besides describing our algorithm, we explore random test
techniques in order to ensure correctness of the algorithm.
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Typically, one can distinguish between testing by using known theoreti-
cal formulae for certain characteristics and testing by comparison to already
existing algorithms. We illustrate both methods, which are based on statis-
tical significance tests. Furthermore, in the case of the typical Cox–Voronoi
cell, certain scaling–invariance properties can be used to test the algorithm
by comparison to itself, i.e., by comparison between different values of input
parameters. This technique allows us to test also for correctness of second–
order moments which was rarely done before in the context of random soft-
ware testing. The tested implementation of the algorithm is included in
the GeoStoch library, which is a Java–based open–library system developed
by the Departments of Applied Information Processing and Stochastics of
the University of Ulm. Notice that the GeoStoch system has been designed
mainly for stochastic–geometric modelling and spatial statistical analysis
of image data on geographic–cartographic as well as microscopic scales; see
Mayer et al. [9] and http://www.geostoch.de.

Finally, we compare our simulation results for the typical Cox–Voronoi
cell to results obtained by analytical formulae for the typical cell of PVT.
Obviously, both models are closely related and it is interesting to see which
kind of relationships exist between them or, on the other hand, to detect
differences between these two classes of tessellations.

The paper is organized as follows. Some necessary mathematical back-
ground is given in Section 2, especially the description of the Cox–Voronoi
model. Section 3 is devoted to the simulation algorithm for the typical
Cox–Voronoi cell. Methods for testing and validating this algorithm are dis-
cussed in Section 4, where different techniques are applied: the comparison
to known analytical formulae, the comparison to other related algorithms,
and the comparison to results for different values of input parameters. In
Section 5, numerical results for specific values of parameter pairs for Cox
processes induced by a Poisson line processes are closely inspected, where it
is shown how one can get results for any pair of given parameters using the
displayed values. Then, in a second part of Section 5, the simulation results
are compared to results obtained by analytical formulae in the Poisson–
Voronoi case.

2 Some preliminaries

In the following we briefly introduce some mathematical notions and the
basic notation used in this paper. Particularly, we emphasize the notion of
stationary random tessellations and their typical cells in the d–dimensional
Euclidean space IRd, where we focus on the planar case d = 2. For a more
detailed discussion of the mathematical background, especially in the case
d > 2, it is referred to the literature, for example Schneider and Weil [12],
and Stoyan, Kendall and Mecke [15]. Further information on random tessel-
lations in IRd can also be found e.g. in Møller [10], and in Okabe et al. [11].

Consider the 2–dimensional Euclidean plane IR2 with the Borel σ–alge-
bra B(IR2). For an arbitrary set B ⊂ IR2, let int B, ∂B, and Bc denote the
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interior, the boundary, and the complement of B, respectively. Furthermore,
for any B ∈ B(IR2), let ν2(B) denote the 2–dimensional Lebesgue measure
and let b(o, 1) be the unit ball, centered at the origin o, with ν2(b(o, 1)) = π.
The families of all closed sets, compact sets, and convex bodies (compact
and convex sets) in IR2 are denoted by F , K, and C, respectively.

Random closed sets and point processes A random closed set Ξ in IR2 is a
measurable mapping Ξ : Ω → F from some probability space (Ω, σ(Ω), IP)
into the space (F ,B(F)), where B(F) denotes the smallest σ–algebra of
subsets of F that contains all sets {F ∈ F , F ∩ K 6= ∅} for any K ∈ K.
Particularly, Ξ is called a random compact set or a random convex body
if IP(Ξ ∈ K) = 1 or IP(Ξ ∈ C) = 1, respectively. A random closed set Ξ is
called stationary if its distribution is invariant under arbitrary translations
in IR2. Analogously, Ξ is called isotropic if its distribution is invariant under
arbitrary rotations about the origin o, respectively.

Furthermore, the following notion of a point process of random closed
sets is useful. For F ′ = F\{∅} , a measurable mapping X : Ω → N(F ′) from
some probability space (Ω, σ(Ω), IP) into the space (N(F ′),N (F ′)) is called
a point process in F ′. Here, N(F ′) denotes the family of all locally finite
counting measures on B(F ′) and N (F ′) is the smallest σ–algebra of subsets
of N(F ′) that contains all sets {η ∈ N(F ′), η(F ∈ F ′, F ∩ K 6= ∅) = k}
for any k = 0, 1, . . . and K ∈ K. Stationarity and isotropy of X can be
defined as in the case of random closed sets mentioned above. The mapping
Λ : B(F ′) → [0,∞] with Λ(B) = IE(X(B)) for any B ∈ B(F ′) is called the
intensity measure of X. Throughout, we assume Λ to be locally finite.

A Poisson point process X in F ′ is defined by two properties. First,
the number of points X(B) of X in a set B ∈ B(F ′) with Λ(B) < ∞ is
Poisson distributed with parameter Λ(B) and, second, for arbitrary n ≥ 2
and for any pairwise disjoint Borel sets B1, . . . , Bn ∈ B(F ′) with Λ(B1) <
∞, . . . , Λ(Bn) < ∞, the random variables X(B1), . . . , X(Bn) are indepen-
dent.

Often it is sufficient to consider simple point processes, which means
that there exists a sequence (Ξn)n∈IN of random closed sets Ξn : Ω → F ′

such that X =
∑X(F ′)

n=1 δΞn
and Ξn 6= Ξn′ if n 6= n′. An important special

case of a (simple) point process in F ′ is given if the random closed sets Ξn

consist of single points only. Then, X is called a point process in IR2 and
can be considered as random counting measure on B(IR2). Furthermore, in
case of stationarity, there exists a constant λ ≥ 0 (called the intensity of X)
such that Λ(B) = λν2(B) for any B ∈ B(IR2).

Poisson line processes Consider the space S of all affine 1–dimensional
subspaces in IR2 and let L = {L ∈ S : o ∈ L}. A point process X in F ′
is called a (planar) line process if for the intensity measure Λ of X it holds
that Λ(F ′ \S) = 0. In case of stationarity, Λ can be disintegrated as follows.
Suppose that Λ is locally finite and not equal to the zero measure. Then,
there exists a constant λ` ∈ (0,∞) and a probability measure Θ on B(L),
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called the orientation distribution of X, such that

Λ(B) = λ`

∫
L

∫
L⊥

1IB(L + x)ν1(dx)Θ(dL) (1)

for any B ∈ B(S), where ν1 denotes the 1–dimensional Lebesgue–measure
on the orthogonal complement L⊥ ∈ L of L ∈ L. Notice that Formula (1)
yields that

λ` =
1
2

IEX(L ∈ S : L ∩ b(o, 1) 6= ∅) , (2)

i.e., 2λ` is the expected number of lines hitting b(o, 1). In particular, we
consider the case that X is a stationary and isotropic Poisson line process.
Then, X can be represented in the form X =

∑
n≥1 δ`(Rn,Vn) , where {Rn} is

a stationary Poisson point process in IR+ with intensity λ` and {Vn} is an
independent sequence of independent and identically distributed random
variables with uniform distribution on [0, 2π). For each line `(Rn,Vn), the
angle Vn is measured in anti–clockwise direction between the (positive) x–
axis and the outer orientation vector of the line, whereas Rn denotes the
perpendicular distance of the line to the origin. Notice that, for a stationary
isotropic line process, Formula (1) can be written as

Λ(B) =
λ`

2π

∫ 2π

0

∫ ∞

0

1IB(`(r,v))drdv , B ∈ B(S) . (3)

Furthermore, each line `(Rn,Vn) in IR2 can be described by its Hessian normal
form `(Rn,Vn) = {(x, y) ∈ IR2 : x cos Vn + y sinVn = Rn}. It is easy to see
that the expected total length IE

∑
n≥1 ν1(`(Rn,Vn)∩b(o, 1)) of lines `(Rn,Vn)

in the unit ball b(o, 1) is given by πλ`. Thus, γ = λ` is the expected total
length per unit area and is called the intensity of the random closed set
X` =

⋃
n≥1 `(Rn,Vn). For simplicity, both X` and X =

∑
n≥1 δ`(Rn,Vn) are

called Poisson line processes in the following; see also Fig. 1a.

Cox processes induced by Poisson line processes In order to describe (dou-
bly stochastic) point processes in IR2 located on the lines of Poisson line pro-
cesses, we use the concept of Cox processes, which can be seen as a general-
ization of (inhomogeneous) Poisson point processes in IR2. More formally, let
X` be a stationary and isotropic Poisson line process with intensity γ. Then,
given X`, the Cox process Xc is a Poisson point process in IR2 with (condi-
tional) intensity measure Λc(· | X`) = λν1(X`∩·) for some λ > 0. In particu-
lar, Xc is a stationary and isotropic point process in IR2 whose intensity mea-
sure Λc satisfies the relationships Λc(·) = IEXc(·) = λIEν1(X`∩·) = λγν2(·),
i.e., λc = λγ is the intensity of Xc. Furthermore, the point processes on the
individual lines of the Poisson line process X` are (1–dimensional) Poisson
point processes with intensity λ. Thus, λ can be interpreted as mean num-
ber of points per unit length of X`. In Fig. 1b, a realization of a Cox process
is shown induced by Poisson point processes on the lines of a Poisson line
process.
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(a) Realization of a Poisson line
process

(b) Realization of Cox points on
the lines of a Poisson line process

(c) Voronoi cells having Cox points
as nuclei

(d) Realization of a Cox–Voronoi
tessellation

Figure 1 Construction principle for the Cox–Voronoi tessellation (γ = 0.1 and
λ = 0.04)

Random tessellations A tessellation in IR2 is some countable family τ =
{Cn}n≥1 of convex bodies Cn ∈ C such that int Cn 6= ∅ for all n, int Cn ∩
int Cm = ∅ for all n 6= m,

⋃
n≥1 Cn = IR2, and

∑
n≥1 1I{Cn∩K 6=∅} < ∞ for

any K ∈ K. Notice that the sets Cn, called the cells of τ , are polygons. The
family of all tessellations in IR2 is denoted by T . A random tessellation in IR2

is a (simple) point process
∑

n≥1 δΞn
in F ′ such that IP({Ξn}n≥1 ∈ T ) = 1.

Notice that a random tessellation can also be considered as a marked point
process Xτ =

∑
n≥1 δ[α(Ξn),Ξ0

n] in IR2, where α : C′ → IR2, C′ = C \ {∅},
is a measurable mapping such that α(C) ∈ C and α(C + x) = α(C) + x
for any C ∈ C′ and x ∈ IRd, and where Ξ0

n = Ξn − α(Ξn) is the centered
cell corresponding to Ξn which contains the origin. The point α(C) ∈ IR2

is called an associated point of C and can be chosen, for example, to be the
lexicographically smallest point of C.

It is not difficult to see that the lines of a stationary and isotropic Pois-
son line process X` induce a (stationary and isotropic) random tessella-
tion in IR2, which is called a Poisson line tessellation (PLT); see Fig. 2a.
Furthermore, for any point process X =

∑
n≥1 δPn

in IR2, consider the
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random sets Ξn = {x ∈ IR2 : |x − Pn| ≤ |x − Pm| for and m 6= n }. If
IP({Ξn}n≥1 ∈ T ) = 1, then Xτ =

∑
n≥1 δΞn is called a Voronoi tessellation

induced by X, where Pn is called the nucleus of Ξn. Notice that the nu-
clei of Voronoi tessellations can be considered as associated points of their
cells. In particular, Xτ is called a Poisson–Voronoi tessellation (PVT) if
X is a Poisson process; see Fig. 2b. Similarly, Xτ is called a Cox–Voronoi
tessellation (CVT) if X is a Cox process; see Fig. 1c,d. Furthermore, the
triangulation, which arises when the nuclei of neighboring cells of a PVT
are connected, is called a Poisson–Delaunay tessellation (PDT); see Fig. 2c.

(a) PLT (b) PVT (c) PDT

Figure 2 Realizations of three basic tessellation models: PLT, PVT, PDT

Typical cell and zero cell of stationary tessellations Suppose that the mark-
ed point process Xτ =

∑
n≥1 δ[α(Ξn),Ξ0

n] is stationary with positive and finite
intensity λτ = IE#{n : α(Ξn) ∈ [0, 1)2}. By P0 we denote the family of
all convex polygons with their associated point at the origin. Then, the
Palm distribution P 0 of the marks of Xτ is given by P 0(B) = λ−1

τ IE#{n :
α(Ξn) ∈ [0, 1)2, Ξ0

n ∈ B} for any B ∈ B(F) ∩ P0. A random polygon
Ξ∗ : Ω → P0, whose distribution coincides with P 0, is called the typical cell
of Xτ . Furthermore, it holds that

λ−1
τ =

∫
P0

ν2(C) P 0(dC) , (4)

i.e., the expected area IEν2(Ξ∗) =
∫
P0 ν2(C) P 0(dC) of the typical cell Ξ∗

is equal to λ−1
τ .

The zero cell Ξ0 of a stationary tessellation Xτ is defined to be the cell
which contains the origin o, i.e., Ξ0 = Ξn if o ∈ int Ξn. Up to translation,
the distribution of the zero cell (of stationary tessellations) is the area–
weighted distribution of the typical cell. In particular, for any translation–
invariant, non–negative and measurable functional f : C → IR we have
that

IEf(Ξ0) = λτ IE(f(Ξ∗) ν2(Ξ∗)) . (5)
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Moreover, it holds that IP(ν2(Ξ0) ≤ x) ≤ IP(ν2(Ξ∗) ≤ x) for any x ≥ 0.
This immediately implies that IEνk

2 (Ξ0) ≥ IEνk
2 (Ξ∗) for each k = 1, 2, . . ..

3 Typical cell of stationary CVT

A simulation algorithm, based on Slivniak’s theorem concerning the Palm
distribution of stationary point processes of Poisson type (see e.g. [12], p.
87 or [15], p. 121) is given for the typical cell of stationary CVT. See also [7]
for algorithms to simulate the typical cell of other stationary tessellations.

Representation of the typical cell The typical cell Ξ∗ of a CVT Xτ can
be given as follows. Assume that the Cox process Xc of nuclei has intensity
λc = λγ and is induced by a Poisson line process X` with intensity γ as de-
scribed in Section 2. Let `(o,V ′

0 ) be a line through the origin with orientation
angle V ′

0 which is independent of Xc and uniformly distributed on [0, 2π).
Furthermore, given V ′

0 , let X∗ be an independent stationary Poisson point
process on `(o,V ′

0 ) with intensity λ. Then, by Slivniak’s theorem, the typi-
cal cell Ξ∗ of Xτ has the same distribution as the zero cell of the Voronoi
tessellation induced by the superimposed point process Xc + X∗ + δo.

Simulation algorithm In view of the representation of the typical cell Ξ∗

mentioned above, our algorithm, visualized in Fig. 3, starts by simulating
the initial line `1 = `(o,V ′

0 ) through the origin o with uniform orientation on
[0, 2π) and by adding a point at the origin. The nearest–neighbor points P1

and P2 with respect to o on `1 in each direction of `1 then have Euclidean
distances Y1 and Y2 from o, where Y1 and Y2 are independent and Exp(λ)–
distributed; see Figure 3a.

For the purpose of simulating a second line, recall that, in order to
simulate the Poisson line process X` radially, i.e., with increasing distance
from the origin, it is sufficient to simulate independent random variables
Ti ∼ Exp(2γ) and V ′

i ∼ U[0, 2π] for each i ∈ {1, . . . , k} and for some k ≥ 1.
Then, k simulated lines can be obtained from the pairs (R′

i, V
′
i ), where

R′
i =

∑i
j=1 Tj . Therefore, a uniformly oriented second line `2 = `R′

1,V ′
1

is
simulated, where R′

1 ∼ Exp(2γ) , and the point of intersection P`1,`2 be-
tween `1 and `2 is computed. Then, the nearest–neighbor points of P`1,`2 ,
say P3 and P4, are simulated on `2 using the memoryless property of the
one–dimensional Poisson process on `2, i.e., the distances of the nearest–
neighbor points in each direction of `2 from the point of intersection P`1,`2

are again Exp(λ)–distributed; see Figure 3b. The four points P1, P2, P3, and
P4, together with the origin o, are used to construct a first initial cell by
computing the Voronoi cell of o with respect to the set {o, P1, P2, P3, P4}.
Notice that by using the general construction principle of Voronoi tessella-
tions, this initial cell provides an upper bound for the maximum distance
from o to all those lines of X` that can influence the shape of the Voronoi
cell with o as its nucleus.
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This maximum distance equals two times the maximum distance of all
vertices of the initial cell from o ; see Fig. 3c. Notice that for simulating
the typical Cox–Voronoi cell it is not necessary to simulate further points
on `1, since they can not influence the typical cell. This is due to the fact
that all bisectors of points on `1 with respect to o are parallel to each
other and hence have no point of intersection. For `2 this is not the case,
meaning that further points have to be simulated with an exponentially
distributed distance to the adjacent point on `2. By simulating further lines
`i+1 = `(R′

i,V
′

i ) , i ≥ 2 with R′
i−1 < R′

i and R′
i − R′

i−1 ∼ Exp(2γ), and by
simulating appropriately many points on these lines, it is finally possible
to generate a cell whose distribution coincides with the distribution of the
typical cell; see Fig. 3d.

For the purpose of short run–times, it is advisable to adjust the new
maximum distance after having simulated a new line with simulated points
on it and after having constructed the corresponding bisectors with regard
to o. This means if the considered cell is split by a bisector of one of the
newly simulated points, it is possible that the regarded maximum distance
can be reduced. The whole procedure is carried out until the distance of the
next simulated line from o is bigger than the maximum distance, which is
equal to two times the maximum distance from all vertices of the regarded
cell to o.

4 Algorithm tests

Certainly, the implementation of an algorithm has to be tested in order to
detect implementation errors. In the present paper, three different types of
statistical tests are applied in order to evaluate the simulation algorithm
described in Section 3, where different (known) properties of the typical cell
are used. Firstly, we use the fact that the mean area of the typical cell is
reciprocal to the intensity (in our case λc = γλ) of the corresponding tessel-
lation; see (4). Secondly, applying the relationship (5) between functionals
of the zero cell and of the typical cell, we get estimates for characteristics
of the zero cell by simulating the typical cell and compare them to results
directly obtained by simulation of the zero cell. Finally, we use a certain
scaling property, i.e. the fact that the expectations of certain (appropri-
ately scaled) characteristics of CVT do not depend on the quotient γ/λ. In
this way, it is possible to test the algorithm by running it for different values
of the input parameters λ and γ such that γ/λ is fixed.

Area test In order to analyze the expected area IEν2(Ξ∗) of the typical cell
Ξ∗ of a CVT Xτ , recall that (4) holds, i.e., IEν2(Ξ∗) = (λγ)−1, where γ is the
intensity of the Poisson line process X` and λ is the mean number of points
per unit length of X`. Therefore it is reasonable to test the null-hypothesis
that the expectation of results for the area of the typical cell Ξ∗ provided
by the implemented algorithm should be equal to (λγ)−1. To evaluate such
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P

P1

2

l1

o

(a) Initial line `1 with points o, P1

and P2

P

P

P

P2

3

4

l

1

1

l2

o

(b) Second line `2 with points P3

and P4

(c) Initial cell (d) Typical cell

Figure 3 Simulation algorithm for the typical Cox–Voronoi cell

a null–hypothesis a well–known statistical test is used, where n = 2000000
realizations ξ̃∗1 , . . . , ξ̃∗n of the implemented version Ξ̃∗ of the typical cell
Ξ∗ were generated to get the estimate 1

n

∑n
i=1 ν̃2(ξ̃∗i ) for IEν2(Ξ∗), where

ν̃2(ξ̃∗i ) denotes the result for the area of a realization ξ̃i provided by the
implementation of the algorithm. Since the underlying sampling variables
ν̃2(Ξ̃∗

i ) are supposed to be independent and identically distributed and since
our sample size n is large enough, the test statistic

T =
√

n
1
n

∑n
i=1 ν̃2(Ξ̃∗

i )− (λγ)−1√
1

n−1

∑n
i=1

(
ν̃2(Ξ̃∗

i )− 1
n

∑n
i=1 ν̃2(Ξ̃∗

i )
)2

is nearly N(0, 1)–distributed; see e.g. [3]. Thus, an asymptotic Gaussian test
can be applied to get inference about the null–hypothesis. Table 1 shows
the p–values of such test for different values of γ and c = γ/λ , where
for a significance level of α = 0.05, say, the null–hypothesis is rejected
only once for all regarded cases, which coincides well with the definition of
the significance level. As conclusion, it can be assumed that the algorithm
provides correct values for the expected area of the typical Cox–Voronoi
cell.
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Table 1 Area tests for the typical Cox–Voronoi cell algorithm: p–values

γ 0.125 0.25 0.4 0.5 0.8 1.0 1.25 1.5
c=10 0.994 0.608 0.972 0.675 0.958 0.979 0.582 0.158
c=50 0.778 0.693 0.932 0.917 0.082 0.114 0.002 0.798
c=120 0.092 0.745 0.760 0.434 0.436 0.880 0.347 0.306

Table 2 Tests by comparison with zero cell algorithm (fixed c): p–values

(a) c = 10

γ η ν1 ν2

0.125 0.067 0.068 0.139
0.25 0.187 0.308 0.237
0.4 0.104 0.020 0.057
0.5 0.391 0.536 0.780
0.8 0.174 0.377 0.255
1.0 0.108 0.019 0.033
1.25 0.696 0.632 0.673
1.5 0.805 0.508 0.431

(b) c = 120

γ η ν1 ν2

0.125 0.741 0.827 0.759
0.25 0.284 0.080 0.057
0.4 0.335 0.157 0.160
0.5 0.652 0.632 0.758
0.8 0.673 0.749 0.829
1.0 0.285 0.178 0.232
1.25 0.471 0.509 0.387
1.5 0.637 0.756 0.793

Tests using comparison with the zero cell By (5), a second possibility
to test the correctness of the algorithm can be provided. Given an im-
plementation to simulate the zero cell Ξ0 of Xτ , estimated characteristics
η̂(Ξ̂0), ν̂1(∂̂Ξ̂0) and ν̂2(Ξ̂0) for the number of vertices η(Ξ0), the perime-
ter ν1(∂Ξ0), and the area ν2(Ξ0), respectively; are compared to estimated
area–weighted characteristics of the typical Cox–Voronoi cell Ξ∗, where the
latter are computed by using our algorithm to be tested. Then, similar to the
situation of the area test described above, we arrive at (asymptotic Gaus-
sian) two–sample tests for the equality of two expectations. Here 2000000
realizations of Ξ̃∗ and 2000000 realizations of Ξ̂0 were generated to verify
null–hypotheses, stating that

– IEη̂(Ξ̂0) = λγ IE(η̃(Ξ̃∗) ν̃2(Ξ̃∗))
– IEν̂1(∂̂Ξ̂0) = λγ IE(ν̃1(∂̃Ξ̃∗) ν̃2(Ξ̃∗))
– IEν̂2(Ξ̂0) = λγ IEν̃2

2(Ξ̃∗).

Table 2 depicts resulting p–values for fixed values of c = γ/λ and different
values of γ, while Table 3 lists p–values for fixed γ but varying c. These
tables show that regarding a significance level of α = 0.05 , the number
of cases where the null–hypothesis is actually rejected is very close to the
theoretically expected number under the null–hypothesis, that is equal to
α times the total number of cases. Therefore the comparison between our
algorithm for the typical Cox–Voronoi cell and a zero cell algorithm assures
that our algorithm provides correct estimates, assuming that the algorithm
for the zero cell is correct.
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Table 3 Tests by comparison with zero cell algorithm (γ = 0.125): p–values

c η ν1 ν2

20 0.653 0.704 0.705
30 0.859 0.608 0.642
40 0.733 0.770 0.783
60 0.424 0.700 0.636
90 0.316 0.187 0.210

Tests using invariance properties under scaling Notice that a certain zoom-
ing effect can be observed for the CVT introduced in Section 2. More pre-
cisely, for c = γ/λ fixed, the following scaling–invariance properties hold.
Suppose that γ = aγ0 and λ = aλ0 for some γ0, λ0 > 0 fixed and a → 0.
Then, the expected number of vertices of the typical cell is constant, whereas
the expected perimeter and the square root of the expected area of the typ-
ical cell grow linearly, proportionally to a−1. As a conclusion, it is possible
to test the equality of (suitably scaled) expectations for results provided by
the implementation of the algorithm for a fixed value of c and for differ-
ent values of γ and λ, respectively. Moreover, similar scaling properties are
true for higher–order moments of the number of vertices, the perimeter and
the expected area of the typical cell. Thus, after suitable scaling, testing
the equality of variances is also possible. For different values of the pair
(γ, λ) with a constant quotient c = γ/λ , 2000000 realizations of Ξ̃∗ were
generated and estimates of (suitably scaled) expectations of the number of
vertices, the perimeter and the expected area of the typical cell were com-
puted. Using the same type of (asymptotic Gaussian) two–sample tests as
in the case described above, the equality of these expectations provided by
the algorithm can be verified. Regarding the equality of the estimation for
the expected perimeters provided by the implementation, the p–values are
displayed in Table 4 for c = 50. Furthermore, 2000000 realizations of Ξ̃∗

were generated for each of 3 different values of c = γ/λ and 8 different val-
ues of γ, where asymptotic Levene–type tests (see [6]) have been performed
for the null-hypothesis of equality of 8 variances of the number of vertices
as well as of (suitably scaled) perimeter and area of the typical cell, respec-
tively. Notice once more, that always the equality of expectations for the
estimates provided by the implementation of the algorithm are tested, not
the equality of expectations for theoretical characteristics. Here the quan-
tiles of the (asymptotic) χ2

7–distribution of the test statistics are used to
compute the p–values for the 3 considered values of c. They are displayed
in Table 5. For other choices of c and γ, we obtained similar results, which
justifies to state that the algorithm behaves as expected.
Notice that an alternative approach (see [8]) to the one presented in this
section would be to test for inequalities rather than equality, for example
by defining some fixed ε > 0 and by testing hypotheses like, for area tests,
IE(ν̃2(Ξ̃∗)) /∈ [(λγ)−1−ε, (λγ)−1+ε]. Such an approach leads to intersection-
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Table 4 Tests for equality of expected perimeter estimates (c = 50): p–values

... γ/γ 0.125 0.25 0.4 0.5 0.8 1.0 1.25 1.5
0.125 – 0.636 0.373 0.393 0.918 0.928 0.995 0.437
0.25 0.636 – 0.251 0.268 0.851 0.867 0.986 0.306
0.4 0.373 0.251 – 0.521 0.957 0.963 0.998 0.566
0.5 0.3933 0.268 0.521 – 0.951 0.958 0.998 0.544
0.8 0.918 0.851 0.957 0.951 – 0.527 0.878 0.061
1.0 0.928 0.86679 0.962 0.958 0.527 – 0.863 0.053
1.25 0.995 0.986 0.998 0.998 0.878 0.863 – 0.003
1.5 0.437 0.306 0.566 0.544 0.061 0.053 0.003 –

Table 5 Levene’s test for equality of variances: p–values

c η ν1 ν2

10 0.457 0.883 0.907
50 0.034 0.623 0.296
120 0.449 0.608 0.603

union tests (see [3]) and to test statistics of the form

T1 =
√

n
1
n

∑n
i=1 ν̃2(Ξ̃∗

i )− (λγ)−1 + ε√
1

n−1

∑n
i=1

(
ν̃2(Ξ̃∗

i )− 1
n

∑n
i=1 ν̃2(Ξ̃∗

i )
)2

and

T2 =
√

n
1
n

∑n
i=1 ν̃2(Ξ̃∗

i )− (λγ)−1 − ε√
1

n−1

∑n
i=1

(
ν̃2(Ξ̃∗

i )− 1
n

∑n
i=1 ν̃2(Ξ̃∗

i )
)2

where T1 and T2 are again assumed to be nearly normal distributed under
the null hypothesis. Then, for large sample sizes, the hypothesis is rejected,
and therefore the implementation is assumed to be correct, if T1 ≥ −zα and
T2 ≤ zα, where zα denotes the α-quantile of a standard normal distribution;
0 < α < 1/2. Using this approach has the advantage of being able to control
the error of classifying an implementation as correct, despite its incorrect-
ness. The main disadvantage, apart from an increased complexity of the
testing method and from the fact that the choice of ε is not obvious, is that
the probability for a classification of a correct implementation as incorrect
can not be arbitrarily fixed. This might lead to a danger of searching for
non-existent bugs in the implementation.

5 Numerical results

In this section, some numerical results for the typical Cox–Voronoi cell Ξ∗

are presented, which have been obtained by the simulation algorithm de-
scribed in Section 3. Of particular interest are distributional properties as
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well as first–order and second–order moments of cell characteristics such as
area, perimeter, and number of vertices. Apart from that, differences to the
behavior of corresponding characteristics of the typical cell of classical PVT
are examined.

(a) Area (b) Perimeter

(c) Number of vertices (c = 60) (d) Number of vertices (c = 90)

Figure 4 Histograms for characteristics of the typical Cox–Voronoi cell

Distributional properties For all simulations we used n = 2000000 itera-
tions. In Figure 4 histograms for the area, the number of vertices, and the
perimeter of the typical Cox–Voronoi cell are displayed, where γ = 0.125
and c = 60 or c = 90, respectively. At first sight, the area seems to follow a
Gamma–distribution, whereas the histogram for the perimeter of the typ-
ical cell looks like a histogram of a normal distribution. Furthermore, the
histograms of the number of vertices seem to have similar shape as the one
for the area, but this time in a discrete version. Notice also that the modes
of the latter two histograms coincide with the expectation IEη(Ξ∗) = 6 of
the underlying theoretical distributions. For other choices of parameters c
and γ, the histograms look quite similar.
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Table 6 Estimates for first–order and second–order moments for c = 50 and
different values of γ

γ IEf(Ξ∗) Varf(Ξ∗) cvf(Ξ∗)

0.125 6.000 1.892 22.925
0.25 6.001 1.896 22.945
0.4 5.998 1.896 22.957

η(Ξ∗) 0.5 5.999 1.897 22.959
0.8 6.000 1.895 22.943
1.0 6.001 1.896 22.945

1.25 6.001 1.900 22.970
1.5 6.001 1.900 22.970

0.125 225.207 3912.919 27.776
0.25 112.617 976.756 27.752
0.4 70.370 382.203 27.782

ν1(∂Ξ∗) 0.5 56.297 244.286 27.763
0.8 35.205 95.521 27.762
1.0 28.165 61.139 27.762

1.25 22.540 39.168 27.766
1.5 18.766 27.134 27.758

0.125 3198.954 3747622.689 60.516
0.25 799.828 233774.327 60.451
0.4 312.300 35711.831 60.511

ν2(Ξ
∗) 0.5 199.882 14625.775 60.504

0.8 78.172 2234.666 60.472
1.0 50.026 914.832 60.461

1.25 32.040 375.760 60.501
1.5 22.212 180.516 60.488

First–order and second–order moments Table 6 shows simulation results
for functionals f(Ξ∗) of the typical Cox–Voronoi cell Ξ∗, where f(Ξ∗) is
either ν2(Ξ∗) (area), ν1(∂Ξ∗) (perimeter), or η(Ξ∗) (number of vertices).

Besides the expectations IEf(Ξ∗), the variances Varf(Ξ∗) as well as the
coefficients of variation cvf(Ξ∗) = 100

√
Varf(Ξ∗)/IEf(Ξ∗) (i.e., standard

deviation times 100 divided by expectation) are also displayed in Table 6,
where results are shown for different values of γ and fixed parameter c =
γ/λ = 50. Recall that in the case presented in Table 6, i.e. for different
values of γ and fixed c, the moments IEf(Ξ∗) and Varf(Ξ∗), respectively, are
related to each other by scaling. For example, IEη(Ξ∗) does not depend on
γ, whereas IEν1(∂Ξ∗) and

√
IEν2(Ξ∗) are linear with respect to 1/γ. These

scaling properties are nicely reflected by the simulated estimates given in
Table 6. In particular, the coefficients of variation given in Table 6 show
that similar scaling properties, analogous to those for expectations, hold
with respect to variances.

In Table 7, the dual case is considered for some fixed γ and for dif-
ferent values of c. Furthermore, by the same scaling properties as men-
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Table 7 Estimates for first–order and second–order moments for γ = 0.125 and
different values of c

c IEf(Ξ∗) Varf(Ξ∗) cvf(Ξ∗)

10 5.998 2.088 24.091
20 6.001 1.981 23.454
30 6.002 1.939 23.200

η(Ξ∗) 40 6.002 1.915 23.056
50 5.999 1.892 22.929
60 6.000 1.883 22.870
90 5.999 1.863 22.752

120 6.000 1.850 22.669
10 100.500 1000.239 31.469
20 142.271 1771.053 29.580
30 174.355 2501.238 28.684

ν1(∂Ξ∗) 40 201.424 3210.422 28.130
50 225.207 3912.919 27.776
60 246.843 4599.240 27.474
90 302.432 6640.160 26.944

120 349.528 8637.773 26.590
10 639.216 197578.455 69.538
20 1280.290 688685.388 64.819
30 1920.488 1447118.677 62.638
40 2560.610 2467092.919 61.340

ν2(Ξ
∗) 50 3198.953 3747622.689 60.516

60 3840.243 5272317.126 59.792
90 5758.732 11386016.845 58.595

120 7684.181 19751363.890 57.836

tioned above, the simulated estimates given in Table 7 can be used in
order to compute estimates for IEf(Ξ∗), Varf(Ξ∗), and cvf(Ξ∗) for any
c ∈ {10, 20, 30, 40, 50, 60, 90, 120} and γ arbitrary. For example, for c = 20
and γ = 0.25, we would get the estimates 6.001, 71.136, and 320.073 for
IEη(Ξ∗), IEν1(∂Ξ∗), and IEν2(Ξ∗), respectively. If we would like to know
estimates for some c 6∈ {10, 20, 30, 40, 50, 60, 90, 120}, they could either be
determined by interpolation from the data given in Table 7, or by simulation
for the value of c under consideration and for some fixed γ and, afterwards,
for the desired values of γ by using the scaling properties. Moreover, looking
at the estimates for IEη(Ξ∗) given in Table 7, we see that all these estimates
are almost equal to 6 for any c, which is conform with the scaling invari-
ance of IEη(Ξ∗). However, the estimates for the variances Varη(Ξ∗) seem
to slightly decrease for increasing c. On the other hand, the estimates for
expectations and variances of perimeter and area, respectively, increase for
increasing c, whereas, interestingly enough, the estimates for the coefficients
of variation decrease for increasing c.
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Table 8 Expected perimeters of Ξ∗
PV T and Ξ∗ provided that IEν2(Ξ

∗
PV T ) =

IEν2(Ξ
∗) = 100

c γ λ λPVT CVT PVT

10 0.3162 0.03162 0.0100 39.731 40.000
20 0.4472 0.02237 0.0100 39.785 40.000
30 0.5477 0.01826 0.0100 39.793 40.000
40 0.6325 0.01581 0.0100 39.807 40.000
50 0.7071 0.01414 0.0100 39.832 40.000
60 0.77460 0.01291 0.0100 39.834 40.000
90 0.9487 0.01054 0.0100 39.848 40.000

120 1.095 0.00913 0.0100 39.879 40.000

Table 9 Expected perimeters of Ξ∗
PV T and Ξ∗ provided that IEν2(Ξ

∗
PV T ) =

IEν2(Ξ
∗) = 625

c γ λ λPVT CVT PVT

10 0.1265 0.01265 0.00160 99.312 100.000
20 0.1789 0.00895 0.00160 99.407 100.000
30 0.2191 0.00730 0.00160 99.472 100.000
40 0.2530 0.00633 0.00160 99.518 100.000
50 0.2828 0.00566 0.00160 99.593 100.000
60 0.3098 0.00516 0.00160 99.598 100.000
90 0.3795 0.00422 0.00160 99.615 100.000

120 0.4382 0.00365 0.00160 99.699 100.000

Comparison to PVT Another interesting effect occurs when the expected
perimeter IEν1(∂Ξ∗) of the typical cell Ξ∗ of a CVT is compared to the
expected perimeter IEν1(∂Ξ∗

PV T ) of the typical cell Ξ∗
PV T of a PVT with

the same intensity. Notice that for the typical cell Ξ∗
PV T of a PVT with

intensity λPV T it holds that

IEν2(Ξ∗
PV T ) =

1
λPV T

, IEν1(∂Ξ∗
PV T ) =

4√
λPV T

, IEη(Ξ∗
PV T ) = 6 . (1)

In particular, IEη(Ξ∗
PV T ) = IEη(Ξ∗) and, assuming that λPV T = λγ,

we have IEν2(Ξ∗
PV T ) = IEν2(Ξ∗). Furthermore, using the second formula in

(1), we can compare the expected perimeter IEν1(∂Ξ∗
PV T ) to the estimate

for IEν1(∂Ξ∗) obtained by the simulation algorithm described in Section 3.
Some numerical results are displayed in Tables 8 and 9, where it is assumed
that the expected areas IEν2(Ξ∗

PV T ) and IEν2(Ξ∗) coincide, being equal to
100 and 625, respectively. Similar results are obtained for other values of
1/λPV T , where the following qualitative behavior is observed. The estimates
for the expected perimeter of the typical Cox–Voronoi cell increase with
increasing c but seem to be in any case smaller than the expected perimeter
of the typical cell of a PVT with the same intensity. A possible explanation
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of this interesting behavior could be the fact that the typical cell of CVT is
more regular than the typical cell of PVT, because two edges of the typical
Cox–Voronoi cell can be parallel with some positive probability. In the case
of a PVT this probability is equal to zero.
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