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Abstract Linear programming can be used for the solution of Markov de-
cision problems (MDPs), both for the discounted and for the average reward
criterion. For the average reward criterion, there are essential differences in
the solution of irreducible, unichained and multichained MDPs. The basic
results for irreducible MDPs were proven already in 1960. In 1968, Denardo
and Fox obtained essential results for the multichain case and simplified
algorithms for the unichain case. Finally, in 1979, Hordijk and this author
have shown a theorem for the computation of optimal policies in multi-
chained MDPs. In the present paper several examples are given to illustrate
the differences in handling irreducible, unichained and multichained MDPs.

1 Introduction

When Hordijk was appointed at Leiden University in 1976, I became his first
PhD student. Looking for a PhD project Hordijk suggested linear program-
ming (LP) methods for the solution of MDPs. LP for MDPs was introduced
by D’Epenoux ([3]) for the discounted case. De Ghellinck ([1]) as well as
Manne ([6]) obtained LP formulations for the average reward criterion in
the irreducible case. The first analysis of LP for the multichain case was
given by Denardo and Fox ([2]). Our interest was raised by Derman’s re-
mark ([4] p. 84): ”No satisfactory treatment of the dual program for the
multiple class case has been published”.

We started to work on this subject. We succeeded in proving a theorem,
which shows how to obtain an optimal policy from the dual program ([5]).

The main difference in the linear programming approach between on
one the side discounted and average irreducible MDPs and on the other
side unichained and multichained MDPs is the fact that the one-to-one cor-
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respondence between stationary policies and feasible solutions of the linear
program does not hold in the last cases.

In this paper we give some examples for the following properties in the
multichain case:

1. An extreme optimal solution of the dual program has in some state more
than one positive variable.

2. An extreme feasible solution of the dual program is mapped on a non-
deterministic stationary policy.

3. Two different solutions are mapped on the same deterministic and sta-
tionary policy.

4. An non-optimal solution of the dual program is mapped on an optimal
deterministic and stationary policy.

5. The results of the unichain case cannot be generalized to the general
single chain case.

In Section 2 the notation of the MDP model and some results of [5] are
given. Section 3 presents the examples.

2 Notation and properties

Let S be the finite state space and A(i) the finite action set in state i ∈ S. If
in state i action a ∈ A(i) is chosen, the a reward ri(a) is earned and pij(a)
is the transition probability that the next state is state j.

Given starting state i and policy R, the average expected reward is
denoted by φi(R). The value-vector φ is defined by φi = supR φi(R), i ∈ S.
Policy R∗ is an average optimal policy if φi(R∗) = φi, i ∈ S.

An MDP is called irreducible if all states belong to a single ergodic
class under all policies; unichained if any policy produces a single ergodic
class plus a (perhaps empty) policy-dependent set of transient states; mul-
tichained if there may be several ergodic classes and some transient states,
and these classes may vary from policy to policy.

The primal and dual linear programs for multichained MPDS are (β is
an arbitrary vector with βj > 0, j ∈ S):

min

∑
j

βjvj

∣∣∣∣ ∑
j {δij − pij(a)}vj ≥ 0 ∀(i, a)

vi +
∑

j {δij − pij(a)}uj ≥ ri(a) ∀(i, a)

}
(1)

and

max

∑
(i,a)

ri(a)xi(a)

∣∣∣∣∣∣
∑

(i,a){δij − pij(a)}xi(a) = 0 ∀j∑
a xj(a) +

∑
(i,a) {δij − pij(a)}yi(a) = βj ∀j
xi(a), yi(a) ≥ 0 ∀(i, a)


(2)

In [2] it was shown that if (v, u) is an optimal solution of the primal
problem (1), than v = φ, the value vector. In [5] the following result was
proven.
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Theorem 1 Let (x, y) be an extreme optimal solution of the dual program
(2). Then, any stationary deterministic policy f such that{

xi(f(i)) > 0 if
∑

a xi(a) > 0
yi(f(i)) > 0 if

∑
a xi(a) = 0 is well-defined and is an average optimal

policy.

The correspondence between feasible solutions (x, y) of (2) and random-
ized stationary policies π is given by the following mappings. For a feasible
solution (x, y) the corresponding policy πx,y is defined by

πx,y
i (a) =


xi(a)∑
a

xi(a)
if

∑
a xi(a) > 0

yi(a)∑
a

yi(a)
if

∑
a xi(a) = 0

(3)

Conversely, for a stationary policy π, we define a feasible solution (xπ, yπ)
of the dual program byxπ

i (a) =
{∑

j βj{P ∗(π)}ji

}
· πi(a)

yπ
i (a) =

{∑
j βj{D(π)}ji +

∑
j γj{P ∗(π)}ji

}
· πi(a),

(4)

where P ∗(π) and D(π) are the stationary and the deviation matrix of the
transition matrix P (π); γj = 0 on the transient states and constant on each
recurrent class under P (π) (for the precise definition of γ see [5]).

Example 1

It is well-known that in the irreducible case each extreme optimal solution
has exactly one positive x-variable. It is also well known that in other cases
some states can have zero positive x-variables. This example gives an MDP
with an extreme optimal solution which has two positive x-variables for some
state. Hence, the two corresponding deterministic and stationary policies are
both optimal. Furthermore, this extreme feasible solution is mapped on a
non-deterministic policy.

The dual program (2) of the model of Figure 1 is (β1 = β2 = 1
4 , β3 = 1

4 ):
maximize x1(1) + 2x2(1) + 4x3(1) + 3x3(2)
subject to
x1(1) − x3(1) = 0
x2(1) − x3(2) = 0
x1(1) − x2(1) + x3(1) + x3(2) = 0
x1(1) + y1(1) − y3(1) = 1

4

x2(1) + y2(1) − y3(2) = 1
4

x3(1) + x3(2) − y1(1) − y2(1) + y3(1) + y3(2) = 1
2

x1(1), x2(1), x3(1), x3(2), y1(1), y2(1), y3(1), y3(2) ≥ 0
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Figure 1

The solution (x, y) given by
x1(1) = x2(1) = x3(1) = x3(2) = 1

4 ,
y1(1) = y2(1) = y3(1) = y3(2) = 0,
is an extreme optimal solution. State 3
has two positive x-variables.

Example 2
The next example (see Figure 2) shows that the mapping (3) is not one-to-
one. Since the rewards are not important for this property, we drop these
numbers in the picture. The constraints of the dual program are (βi =
1
4 , 1 ≤ i ≤ 4):

x1(1) − x3(2) = 0
−x1(1) + x2(1) + x2(2) = 0
−x2(1) + x3(2) = 0
−x2(2) = 0

x1(1) + y1(1) − y3(2) = 1
4

x2(1) + x2(2) − y1(1) + y2(1) + y2(2) = 1
4

x3(1) + x3(2) − y2(1) + y3(2) = 1
4

x4(1) − y2(2) = 1
4

x1(1), x2(1), x2(2), x3(1), x3(2), x4(1), y1(1), y2(1), y2(2), y3(2 ≥ 0
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Figure 2

The solutions (x1, y1) given by
x1

1(1) = 1
4 , x1

2(1) = 1
4 , x1

2(1) = 0,

x1
3(1) = 0, x1

3(2) = 1
4 , x1

4(1) = 1
4 ,

y1
1(1) = y1

2(1) = y1
2(2) = y1

3(2) = 0,
and (x2, y2), where x2

1(1) = 1
6 ,

x2
2(1) = 1

6 , x2
2(1) = x2

3(1) = 0,

x2
3(2) = 1

6 , x2
4(1) = 1

2 , y2
1(1) = 1

6 ,

y2
2(1) = 0, y2

2(2) = 1
4 , y2

3(2) = 1
12 ,

are two feasible solutions which are
mapped on the same deterministic
and stationary policy f , where
f(1) = f(2) = 1, f(3) = 2, f(4) = 1.

Example 3
In this example we present a feasible non-optimal solution which is mapped
on an optimal policy. The dual program for the model of Figure 3 is (β1 =
β2 = β3 = 1

3 ):
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maximize x1(1)

subject to

x1(1) + x1(2) − x2(1) = 0
x2(1) − x1(1) = 0

−x1(2) = 0
x1(1) + x1(2) + y1(1) + y1(2) − y2(1) = 1

3

x2(1) + x2(2) − y1(1) + y2(1) = 1
3

x3(1) − y1(2) = 1
3

x1(1), x1(2), x2(1), x2(2), x3(1), y1(1), y1(2), y2(1) ≥ 0
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Figure 3

The solution (x, y) given by x1(1) = 1
6 ,

x1(2) = 0, x2(1) = 1
6 , x2(2) = 0,

x3(1) = 2
3 , y1(1) = 0, y1(2) = 1

3 ,

y2(1) = 1
6 is a feasible solution, but not

an optimal solution (x1(1) = x2(1) =
x3(1) = 1

3 and all other variables 0 is
the optimal solution). However, the
corresponding policy f has actions
f(1) = 1, f(2) = 2, f(3) = 1 is an
optimal policy.

Example 4

Sometimes, the notion of a general unichained MDP is used. In the general
unichain case, there exists an optimal policy with a single ergodic class
plus a (perhaps empty) policy-dependent set of transient states. In this
last example, we show that the general unichained model needs another
approach than the unichain case; even an additional search procedure is not
sufficient.

In the unichain case, the value vector is a constant vector and the linear
programs simplify to

min
{
v

∣∣ v +
∑

j {δij − pij(a)}uj ≥ ri(a) ∀(i, a)
}

(5)

and

max

∑
(i,a)

ri(a)xi(a)

∣∣∣∣∣∣
∑

(i,a){δij − pij(a)}xi(a) = 0 ∀j∑
(i,a) xi(a) = 1

xi(a) ≥ 0 ∀(i, a)

 (6)

Furthermore, if x is an extreme optimal solution of the dual program (6),
then any stationary deterministic policy f such that
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xi(f(i)) > 0 if

∑
a xi(a) > 0

arbitrarily if
∑

a xi(a) = 0,
is well-defined and is an average optimal

policy.

The model of Figure 4 is general unichained since the policy which chooses
in states 2 and 3 action 2 (state 1 has only one action) is an optimal policy
and has a single chain structure. The dual program (6) of this model is:
maximize x2(2) + x3(1)
subject to

x1(1) − x2(1) = 0
−x1(1) + x2(1) − x3(2) = 0
−x3(2) = 0

x1(1) + x2(1) + x2(2) + x3(1) + x3(2) = 1
x1(1), x2(1), x2(2), x3(1), x3(1) ≥ 0
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Figure 4

x given by x1(1) = x2(1) = x2(2) =
x3(2) = 0, x3(1) = 1 is an extreme op-
timal solution. In state 3, the policy cor-
responding to x chooses action 1. The
choice in state 2 for an optimal policy is
not arbitrary. Since the set of the states
1 and 2 is closed under any policy, it is
impossible to search for actions in these
states with transitions to the absorbing
state 3.
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