
Mathematical Methods in Operations Research 2005
Special issue in honor of Arie Hordijk

Routing to parallel homogeneous queues

Ger Koole

Vrije Universiteit Amsterdam

Received: December 2004 / Revised version: January 2005

Abstract We give an overview of results on routing to parallel homo-
geneous queues, some of which were up to now unavailable in the open
literature.

1 Introduction

Arie Hordijk’s work has been dominated by two research areas: queueing
theory and stochastic dynamic programming. These were also the two ad-
vanced courses that Arie teached in Leiden while I was a Master student.
It was at the intersection of these fields that I worked as a PhD student,
and I still work on them, more than 15 years later. The first results that we
obtained were on routing to parallel queues. The main result seems quite
simple: just route to the shortest queue. In this short paper I’ll show that
there is more to that, by giving an overview of results concerning routing
to parallel homogeneous queues. Crucial for a classification of results is the
information that optimal policies are allowed to use: is the action a function
of the queue lengths or even the workloads, or are these unknown? The more
information, the better the decision is. In the next section we introduce the
model.

2 Model formulation and results

We consider customers arriving according to some point process. All results
can be generalized to any process, for simplicity we only consider Poisson
processes. The service time of all customers has the same distribution. For
a given realization of the process, we denote the service time of customer
n with sn. There are m queues with identical servers. At the arrival of
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the ith customer, queue j has xn
j customers (including the one in service),

and the total workload in the queue is wn
j . In this paper we restrict to

minimizing average workload. This is often equivalent to minimizing the
average number of customers in the system, which in turn, according to
Little’s law, is equivalent to minimizing the average waiting time.

Bernoulli policies Consider the class of policies that does not depend on
any of the variables sn, wn or xn and for which we have the additional
condition that the decision rules all have the same distribution on the actions
(decision rules are allowed to randomize). The policy that selects each queue
with the same probability m−1 is optimal in the sense that it minimizes the
expected workload at any time. This follows readily from the next theorem
that deals with a single queue with general arrival and service process, but
arrivals are only admitted with a certain probability.

Theorem 1 The expected workload in a single server queue is, at any time,
a convex function of the admission probability.

Proof We couple 4 systems, with admission probabilities λ, twice λ + δ,
and λ + 2δ, such that 0 ≤ λ ≤ λ + 2δ ≤ 1, with respective workloads
wλ

t , wλ+δ
t , w̃λ+δ

t , wλ+2δ
t at time t. We take the arrival and service times the

same for all 4 processes. The admission processes are coupled by the use
of a uniform distribution for each arrival instant. For a realization u the
admission is as follows. The arrival is admitted in all systems if u ≤ λ, it is
rejected in all systems if u > λ + 2δ, it is admitted in the wλ+δ

t and wλ+2δ
t -

systems if u ∈ (λ, λ + δ] and it is admitted in the w̃λ+δ
t and wλ+2δ

t -systems
if u ∈ (λ + δ, λ + 2δ]. Now assume that at some t the following holds:

wλ
t ≤ wλ+δ

t , w̃λ+δ
t ≤ wλ+2δ

t ; (1)

wλ+δ
t + w̃λ+δ

t ≤ wλ
t + wλ+2δ

t . (2)

Note that they hold for an empty system. Now consider the system at t+s,
before the next arrival. At that moment the workload is (w•t − s)+. By
checking all possible values of s it is readily seen that (1)-(2) still hold. Now
assume that an arrival occurs. Thanks to the way we coupled the admission
it can be seen again that (1)-(2) remain valid. This shows that (1)-(2) hold
for all t. The convexity follows from (2). QED

Other results on this type of Bernoulli policies can be found in [1,2,5].

Static policies We extend the class of policies in the following way: policies
do not depend on any of the variables sn, wn or xn, but the decision rules
are allowed to differ at different times. For an initially empty system cyclic
or round-robin routing, i.e., (1, . . . ,m, 1, . . . ,m, . . .), is optimal. For a proof
see [9, Prop. 8.3.4], for exponential service times, or [8], for ILR service
times.
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Policies based on queue length Now we go to a class of policies where infor-
mation on the queue lengths xn and the elapsed service times are available.
The latter is relevant in the case of non-exponential service times; see [6]
for a positive result for non-exponential service time, and [10] for some
counterexamples. Here we concentrate on exponential service times, then
the elapsed service time gives no additional information. Routing to the
shortest queue is optimal, shown first in [11], but there is a remarkably sim-
ple dynamic programming (dp) proof. Note that the expected workload is
simply the number of customers times the expected service time. The dp
equation for the numbers of customers in the queues, after uniformization
([7]), with the usual notation and λ + mµ = 1, is given by:

Vn+1(x) =
m∑

j=1

xj + λ min
1≤j≤m

{
Vn(x + ej)

}
+ µ

m∑
j=1

Vn((x− ej)+).

Using induction it can be shown that:

Vn(x + ei) ≤ Vn(x + ej) for xi ≤ xj ;

Vn(x) = Vn(x′) with x′ a permutation of x;

Vn(x) ≤ Vn(x + e1).

The (in)equalities can be shown to hold for all n by induction, the optimality
of routing to the shortest queue follows from the first inequality. A complete
proof can be found in our first joint publication [3].

Policies based on queue length and workload Our next set of policies routes
customers on the basis of workloads and queue lengths. The queue lengths
do not give additional information on the evolution and direct costs of the
process, therefore it suffices to consider the workloads. Again we formulate
the dp equation, now for general service times. With un we denote the nth
interarrival time, numbered backwards, and with F the distribution function
of the service time. Then the dp equation for the workloads reads:

Vn+1(w) =
m∑

j=1

wj + min
1≤j≤m

{∫ ∞

0

Vn((w + sej − une)+)dF (s)
}

.

Similar equations as for the case with queue lengths hold for the workload
case: ∫

Vn(w + sei)dF (s) ≤
∫

Vn(w + sej)dF (s) for wi ≤ wj ; (3)

Vn(w) = Vn(w′) for w′ a permutation of w;

Vn(w) ≤ Vn(w + se1) for s ≥ 0.

Equation (3) shows that routing to the queue with the shortest workload is
optimal. This equation should not be confused with Vn(w + sei) ≤ Vn(w +
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sej) for some or all s. Having the integral inside the minimization means
that the routing decision is made not knowing the service time of the arriving
customer. If this is the case we get the dp equation

Vn+1(w) =
∫ ∞

0

min
1≤j≤m

{
Vn((w + sej − une)+)

}
dF (s).

It is easy to construct counterexamples against the optimality of the shortest
workload policy for this case. This was to be expected, given the relation
with the NP-complete deterministic machine scheduling problem ([4]).

Simulation We end the paper by reporting on simulation experiments ex-
ecuted for m = 5, exponential service times with unit mean, and varying
load. By variance analysis we verified that all digits are significant. Bernoulli
with thinning leads to 5 independent M/M/1 queues, shortest workload is
equivalent to one M/M/5 queue. We verified the simulation for these poli-
cies using theoretical results. We see that the expected workload decreases
as the amount of information increases.

load Bernoulli cyclic shortest queue shortest workload

50% 5.00 3.49 2.77 2.63
80% 20.0 12.6 7.0 6.2
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