
Mathematical Methods in Operations Research 2005
Special issue in honor of Arie Hordijk

Extending Simulation uses of Antithetic
Variables: Partially Monotone Functions,
Random Permutations, and Random Subsets

Sheldon M. Ross

Epstein Department of Industrial and Systems Engineering
University of Southern California
smross@usc.edu

Abstract We show how to effectively use antithetic variables to evalu-
ate the expected value of (a) functions of independent random variables,
when the functions are monotonic in only some of their variables, (b) Schur
functions of random permutations, and (c) monotone functions of random
subsets.
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1 Introduction

Analyzing risk models often involves a determination of the expected val-
ues of functions of multiple random variables. As it is often not possible to
explicitly compute these values, simulation is often applied. Because there
are usually many such quantities, depending on various risk assumptions,
it is important that the simulations be done in such a manner as to quickly
give accurate estimates of the desired quantities. One approach that has
often been applied is to try to use successive simulation runs to obtain
identically distributed unbiased run estimators that are not independent
but rather are negatively correlated. The value of this is that it results in
an unbiased estimator (the average of the estimates from all the runs) that
has a smaller variance than would the average of identically distributed run
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estimators that are also independent. This raises the question of how we
can obtain such identically distributed but negatively correlated estimators
from successive simulation runs. One known result along this line is con-
cerned with the situation where we want to estimate θ = E[h(Un)], where
Un = (U1, . . . , Un) is an n-vector of independent uniform (0, 1) random
variables, and h is some specified function. It is known (see [1]) that if h
is a monotone function of each of its coordinates (possibly increasing in
some and decreasing in others) then the approach, known as the antithetic
variables approach, of using a generated vector Un to obtain two unbiased
and identically distributed estimators h(Un) and h(1n −Un)], where 1n is
an n-vector of 1′s, yields an estimator with a smaller variance than would
be obtained in using the average of two independent estimators distributed
as h(Un). In Section 2 of this paper, we show how this antithetic variable
approach can be applied when h is only a monotone function of some of its
variables.

It is of importance in homeland security models to be able to assess the
consequences of an attack not only on a single target but also on a randomly
chosen subset of targets. Thus, to analyze such problems by simulation we
need to first generate a random subset. A question of interest is whether
one should generate an independent random subset for each simulation run
or rather utilize one that depends on past choices. To answer this question,
in Sections 3 and 4 we consider using simulation to estimate the expected
values of functions of random permutations (section 3) and then apply these
results to functions of random subsets (section 4). In these sections we show
when utilizing “antithetic” random permutations and random subsets in
different simulation runs is better than utilizing independent ones.

2 Expected Values of Partially Monotone Functions

Suppose we want to use simulation to estimate θ = E[h(Un)], where Un =
(U1, . . . , Un) is an n-vector of independent uniform (0, 1) random variables,
and where h is a function that is monotone in only some of its variables,
say in its first r components. In this case, we show that

Var[h(Un) + h(1r −Ur, Vr+1, . . . , Vn)] ≤ 2Var[h(Un)] (1)

when U1, . . . , Ur, Ur+1, . . . , Un, Vr+1 . . . , Vn are all independent uniform (0, 1)
random variables. Thus, when h is a monotone function of its first r vari-
ables, the random vector U1, . . . , Ur . . . , Un should be generated and h eval-
uated at this vector. But then the next estimator should use the random
vector 1 − U1, . . . , 1 − Ur along with an additional n − r independently
generated uniform (0, 1) random variables Vr+1, . . . , Vn.

We prove (1) by proving the equivalent result:

Theorem 1: If h is monotone in its first r variables, then

Cov(h(Un), h(1r −Ur, Vr+1, . . . , Vn)) ≤ 0 (2)
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Proof of Theorem 1: Suppose h is monotonically increasing in its first
r variables. Let U = (Ur+1, . . . , Un) and let V = (Vr+1, . . . , Vn). Because,
given U,V, the random variables h(Un) and −h(1r −Ur, Vr+1, . . . , Vn) are
both monotone increasing functions of U1, . . . , Ur it follows that

Cov(h(Un), −h(1r −Ur, Vr+1, . . . , Vn)|U,V) ≥ 0

implying that

E[Cov(h(Un), h(1r −Ur, Vr+1, . . . , Vn)|U,V)] ≤ 0 (3)

Also, E[(h(Un)|U,V)] and −E[h(1r −Ur, Vr+1, . . . , Vn)|U,V)] are both
increasing in U1, . . . , Ur, implying that

Cov(E[(h(Un)|U,V)], −E[h(1r −Ur, Vr+1, . . . , Vn)|U,V)] ≥ 0 (4)

The result (2) now follows from (3) and (4) upon application of the condi-
tional covariance formula that

Cov(X, Y ) = E[Cov(X, Y |Z)] + Cov(E[X|Z], E[Y |Z]).

Now suppose that h is monotone increasing in some of its first r coordinates
and monotone decreasing in the remaining ones. For instance, suppose h
is monotone increasing in its first k coordinates and monotone decreasing
in its next r − k coordinates, k ≤ r. Then upon replacing U1, . . . , Ur by
U1, . . . , Uk, 1 − Uk+1, . . . , 1 − Ur, the function h is monotone increasing in
each of U1, . . . , Ur and the argument proceeds as before. QED

3 Random Permutations

Let I1, . . . , In be equally likely to be any of the n! permutations of 1, . . . , n,
and suppose we are interested in using simulation to estimate

θ = E[f(vI1 , . . . , vIn
)],

for specified values v1 < v2 < . . . < vn, and a specified function f . Af-
ter generating a random permutation V = (vI1 , . . . , vIn

), two “antithetic
permutations” suggest themselves. Namely,

V1 = (vIn
, . . . , vI1) (5)

and
V2 = (vn+1−I1 , . . . , vn+1−In) (6)

We now show that if h is a Schur convex or concave function (to be defined)
then using either V1 or V2 in conjunction with V is better than evaluating
h at V and at another random permutation independent of V.
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Let v1 = (vi1 , . . . , vin
) and v2 = (vj1 , . . . , vjn

) both be permutations of
v1, . . . , vn. Say that v1 majorizes v2 if

k∑
r=1

vir ≥
k∑

r=1

vjr for all k = 1, . . . , n

Say that h is a Schur convex (concave) function if h(v1) ≥ (≤)h(v2) when-
ever v1 majorizes v2.

In the following, suppose that V = (vI1 , . . . , vIn
) is equally likely to be

any of the n! permutations of v1, . . . , vn, and suppose that V1 and V2 are
as defined by (5) and (6).

Theorem 2 If g and h are either both Schur convex or both Schur concave
functions defined on permutations of v1, . . . , vn, then

Cov(g(V), h(Vi)) ≤ 0, i = 1,2

To prove the theorem we will use the following lemma.

Lemma 1. If h is Schur convex, then E[h(V)|I1 = i] is increasing in i, and
E[h(V1)|I1 = i] and E[h(V2)|I1 = i] are both decreasing in i. If h is Schur
concave, then the preceding remains true when the terms “increasing” and
“decreasing” are interchanged.

Proof of Lemma 1. Let i > 1, and let P denote the set of all (n − 2)!
permutations of the values 1, . . . , i−2, i+1, . . . , n. Then, for a Schur convex
function h

E[h(V)|I1 = i]

=
1

(n− 1)!

∑
(x1,...,xn−2)∈P

n−1∑
k=1

h(vi, vx1 , . . . , vxk−1 , vi−1, vxk
, . . . , vxn−2)

≥ 1
(n− 1)!

∑
(x1,...,xn−2)∈P

n−1∑
k=1

h(vi−1, vx1 , . . . , vxk−1 , vi, vxk
, . . . , vxn−2)

= E[h(V)|I1 = i− 1]

where the inequality follows from the Schur convexity of h. Similarly,

E[h(V1)|I1 = i]

=
1

(n− 1)!

∑
(x1,...,xn−2)∈P

n−1∑
k=1

h(vx1 , . . . , vxk−1 , vi−1, vxk
, . . . , vxn−2 , vi)

≤ 1
(n− 1)!

∑
(x1,...,xn−2)∈P

n−1∑
k=1

h(vx1 , . . . , vxk−1 , vi, vxk
, . . . , vxn−2 , vi−1)

= E[h(V1)|I1 = i− 1]
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Also, with P′ denoting the set of all (n − 2)! permutations of the values
1, . . . , n + 3− i, n− i, . . . , n

E[h(V2)|I1 = i]

=
1

(n− 1)!
×

∑
(x1,...,xn−2)∈P

n−1∑
k=1

h(vn+1−i, vx1 , . . . , vxk−1 , vn+2−i, vxk
, . . . , vxn−2)

≤ 1
(n− 1)!

×

∑
(x1,...,xn−2)∈P

n−1∑
k=1

h(vn+2−i, vx1 , . . . , vxk−1 , vn+1−i, vxk
, . . . , vxn−2)

= E[h(V2)|I1 = i− 1]

The proof for a Schur concave function is similar. QED

Proof of Theorem 2. The proof is by induction on n. Suppose g and h are
Schur convex functions. As the theorem is true for n = 1 (because the covari-
ance is 0 in this case), assume it to be true for n− 1. Because the functions
g(vj , x1, . . . , xn−1), h(x1, . . . , xn−1, vj) and h(vn+1−j , x1, . . . , xn−1) are all
Schur convex functions defined on the (n− 1)! permutations (x1, . . . , xn−1)
of v1, . . . , vj−1, vj+1, . . . , vn, it follows from the induction hypothesis that
for i = 1,2

Cov(g(V), h(Vi)|I1 = j) ≤ 0

implying that
E[Cov(g(V), h(Vi)|I1)] ≤ 0

It follows from Lemma 1 that E[g(V)|I1] is increasing in I1, whereas both
E[h(V1)|I1] and E[h(V2)|I1] are decreasing in I1. Consequently, for i = 1,2

Cov(E[g(V)|I1], E[h(Vi)|I1]) ≤ 0

and the result follows from the conditional covariance identity. The proof
when f and g are Schur concave is similar. QED

Remark: The theorem is not true without conditions on g. For instance,
suppose the function g defined on permutations of 1, . . . , n is large for per-
mutations with 1 or n near the front or the back of the permutation.

Example 1. Suppose that n jobs must be processed sequentially on a
single machine. Suppose that the processing times are t1 ≤ t2 ≤ · · · ≤ tn,
and that a reward R(t) is earned whenever a job processing is completed at
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time t. Consequently, if the jobs are processed in the order i1, . . . , in, then
the total reward is

h(i1, . . . , in) =
n∑

j=1

R(ti1 + . . . + tij
)

If R(t) is a monotone function of t then it easily follows that h is a Schur
function (concave if h is decreasing, convex if h is increasing). Hence, when
using simulation to approximate the expected total return when the pro-
cessing order is equally likely to be any of the n! orderings, each randomly
generated permutation should be used twice, in the manner of Theorem 2.

4 Random Subsets

Suppose one wants to use simulation to determine θ = E[g(B)] where B is
equally likely to be any of the

(
n
k

)
subsets of S = {1, 2, . . . , n} that contain

k elements, and g is a function defined on k−element subsets of S. Say that
the function g is increasing (decreasing) if for all subsets A of size k − 1,
g(A ∪ i) is an increasing (decreasing) function of i for i /∈ A. Now, rather
than generating independent subsets of size k to estimate θ, one can also
generate first a random k−element subset of S, call it R1; then generate a
random k−element subset from S −R1, call it R2; then generate a random
k−element subset from S − R1 − R2, call it R3, and so on. We now show
that when g is a monotone function this latter approach results in a better
estimate of θ than would be obtained from generating independent subsets.

Theorem 3. With Rj as specified in the preceding,

Cov(g(Ri), g(Rj)) ≤ 0

when g is either an increasing or decreasing function.

Proof: Suppose n ≥ 2k. Define the function h on permutations of S by

h(i1, . . . , in) = g(i1, . . . , ik)

Because h is a Schur function, it follows from Theorem 2 that for a random
permutation I1, . . . , In, the covariance between h(I1, . . . , In) and h(In, . . . , I1)
is nonnegative. But this means that

Cov(g(I1, . . . , Ik), g(In−k+1, . . . , In) ≤ 0

The result now follows because the joint distribution of g(I1, . . . , Ik), and
g(In−k+1, . . . , In) is the same as the joint distribution of g(Ri) and g(Rj)
whenever Ri and Rj are randomly chosen non-overlapping k− element sub-
sets of S. QED



Extending Simulation uses of Antithetic Variables 7

Remarks:
(a) Suppose n is not an integral multiple of k, say n = ki + j, where
0 < j < k. Then after generating R1, . . . , Ri one could either start over,
or (better yet) one can generate one additional k−element subset of S by
using the j elements not in any of R1, . . . , Ri along with a random selection
of k − j elements of ∪i

t=1Rt

(b) Like Theorem 2, Theorem 3 is not true without some conditions on
g. To see this, suppose that n = 2k and that g(R) is large (say equal to
1) when R contains exactly one of values 1, 2 and is small (say, equal to 0)
otherwise. Then g(R) and g(Rc) would be positively correlated.

5 References

1. Ross, S. M., Simulation, third ed., Academic Press, 2002


