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Abstract As an extension of the discrete-time case, this note investigates
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rate.
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1 Introduction

The usual average criteria examined in the literature on Markov reward
processes can be insufficient to fully capture the various aspects for a deci-
sion maker. It may be preferable to also include more sophisticated criteria
to reflect variability-risk features (for details see [17]). Most notably, the
variance of cumulative rewards can be indicative and seems of interest.

The variance of cumulative reward structures has been studied exten-
sively for discrete-time Markov reward chains. The majority of these results
has been involved with the development of further optimization criterion
(see [1], [2], [3], [4], [5], [7], [8], [10], [13], [15], [16]).

For the continuous-time case only structural results were reported in [5]
while just recently explicit expressions were developed in [14]. (The present
paper is related to the latter reference but focuses on the embedded Markov
chain to also include non-exponential densities).
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No results, however, seem to be reported for semi-Markov processes.
Such an extension is not direct as higher moments and stochastic durations
are to be taken into account.

In this paper therefore we aim to establish a first step in this direction.
This step can be seen as essential for further optimization results in line
with the discrete-time case.

2 Formulation and Notation

Consider a semi-Markov reward process Y = {Y (t), t ≥ 0} with finite
state space I = {1, 2, . . . , N} along with the embedded Markov chain
X = {Xn, n = 0, 1, . . .}. The transition and reward structure is charac-
terized by

pij : transition probability from i → j (i, j ∈ I, j 6= i) of the embedded

Markov chain X with generic stochastic matrix P = [pij ]
N
i,j=1,

ηij : random time of the transition from i → j, hence ηi = Σj∈I pijηij

is the random time spent by the semi-Markov process Y in state i,

F ij(τ) : distribution function representing the conditional probability
P(ηij ≤ τ),

rij : instantaneous transition reward for a transition from i → j,

ri : reward rate per unit of time incurred in state i.

We will be interested in the variance of the total reward per unit of time
and its behavior for the infinite time horizon.

To this end, let the vector R(t) denote the expected total reward of the
semi-Markov process Y (t) up to time t given its initial state at time t = 0.
More precisely, we are interested in

g = lim
t→∞

1
t
· Ri(t) with Ri(t) = E[ξ(t)|Y (0) = i] (1)

where

ξ(t) =

∫ t

0

rY (s)ds +
N(t)∑
k=0

rY (τ−
k

),Y (τ+
k

)


with Y (s), denoting the state of the system at time s, Y (τ−k ) and Y (τ+

k )
the state just prior and after the k-th jump, N(t) the number of jumps up
to time t and E and σ2 the standard symbols for expectation and variance.

Now consider the embedded Markov chain X = {Xn, n = 0, 1, 2, . . .}
and let the vectors R(n), S(n), and V (n) denote the first moment, the
second moment and the variance of the (random) total reward ξn received
in the first n transitions of the embedded Markov chain X given its initial
state at time t = 0 respectively.
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That is,

Ri(n) = E[ξn|X(0) = i],

Si(n) = E[ξ2
n|X(0) = i],

Vi(n) = σ2[ξn|X(0) = i]

where

ξn =
n−1∑
k=0

[
rXk

· ηXk,Xk+1 + rXk,Xk+1

]
.

Similarly, D(n) is the vector of expected times ζn spent in the first n tran-
sitions with elements

Di(n) = E[ζn|X(0) = i] where ζn =
n−1∑
k=0

[
ηXk,Xk+1

]
.

From the theory of dynamic programming it is well known that under
assumption AS1 below

gr := lim
n→∞

1
n
·Ri(n), gt := lim

n→∞

1
n
·Di(n) exist for all i ∈ I.

It can then also be shown (see [12], Chapt. 7.3) that under assumptions
AS1–AS2 below then also:

g = lim
t→∞

1
t
· Ri(t) =:

gr

gt
=

lim
n→∞

Ri(n)

lim
n→∞

Di(n)
. (2)

As mentioned in the introduction, such as for second order optimization
purposes, and in analogy with (2) as our main interest we aim to study the
“mean” variance defined by

G :=
lim

n→∞
Vi(n)

lim
n→∞

Di(n)
. (3)

Notation. In what follows I denotes an identity matrix, and e is reserved
for a unit column vector. By ε(t) we denote a function in t such that ε(t) → 0
exponentially fast as t →∞, i.e. for some α and β: |ε(t)| ≤ α · e−βt. By ε(t)
we denote a vector function such that each component εi(t) → 0 as t →∞
exponentially fast.
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Assumptions. We make the following assumptions:

AS 1. The transition probability matrix P has a single class of recurrent
states and is aperiodic.

AS 2. F ij(τ) is a non-lattice distribution. The first two moments d
(1)
i , d

(2)
i

of the of (random) time ηi (i ∈ I) spent by the process Y in any state
during each visit are positive and finite, i.e. we assume that for ` = 1, 2
and any i, j = 1, . . . , N

0 < d
(`)
ij =

∫ ∞

0

τ ` dF ij(τ) < ∞ hence also 0 < d
(`)
i =

N∑
j=1

pijd
(`)
ij < ∞.

3 Preliminaries

As well-known, under AS 1 the rows of the limiting matrix P ∗ = lim
n→∞

1
n

n−1∑
k=0

P k

of the embedded Markov chain X are identical and equal to the (row) vector
of steady state probabilities π = [π1, . . . , πN ] as determined by π = π · P
along with the normalizing condition π · e = 1. Moreover, since P is aperi-
odic P ∗ = lim

k→∞
P k and the convergence is geometrically fast. Then

g =

∑
j∈I πj · r(1)

j∑
j∈I πj · d(1)

j

(4)

with r
(1)
i defined by (16) and d

(1)
i the first moment of the (random) time

ηi. Also the average reward gr and the average time gt per transition of the
embedded Markov chain are well defined by:

gr =
∑
j∈I

πj · r(1)
j , gt =

∑
j∈I

πj · dj
(1).

Obviously for the constant vectors gr and gt with elements gr and gt we
have gr = P ∗ · r(1), gt = P ∗ · d(1), respectively.

From the theory of dynamic programming (e.g. [11], [12]) it is well-
known that the vectors of expected reward and times for n transitions fulfil
the recursive formulas

R(n + 1) = r(1) + P ·R(n) with R(0) = 0 (5)

D(n + 1) = d(1) + P ·D(n) with D(0) = 0. (6)

Furthermore, under assumption AS 1, there exists vectors wr, wt such that

R(n) = gr · n + wr + ε(n) (7)
D(n) = gt · n + wt + ε(n). (8)
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Hence, both R(n) and D(n) possess a linear growth rate gr and gt in n
up to a geometric convergence to the null vector and vectors wr and wt,
respectively. The constant vectors gr, gt along with vectors wr, wt are
uniquely determined by

wr + gr = r(1) + P ·wr, P ∗ ·wr = 0 (9)

wt + gt = d(1) + P ·wt, P ∗ ·wt = 0. (10)

From (9), (10) we can also immediately conclude the existence of a constant
vector g along with vector w being the unique solution of the equation

w + D(1) · g = r(1) + P ·w, P ∗ ·w = 0, (11)

where the ith element of the diagonal matrix D(1) equals d
(1)
i , where the

elements of the constant vector g are equal to g = gr/gt and where for the
ith element of w, wi = wr

i − g · wt
i .

Conditional Expectations of Reward. Let Ei denote the conditional expec-
tation given X(0) = i. Since the process X is time homogeneous, for n > m
we can conclude that

Ei[ξn] = Ei[ξm] + Ei{
∑
j∈I

P(Xm = j) · Ej [ξn−m]}. (12)

Similarly we get

Ei[ξn]2 = Ei[ξm]2 + Ei{
∑
j∈I

P(Xm = j) · Ej [ξn−m]2}

+2 · Ei[ξm]
∑
j∈I

P(Xm = j) · Ej [ξn−m]. (13)

4 Reward Variance of Embedded Markov Chains

In this section we focus our attention on the total reward variance generated
by the embedded Markov chain X = {Xn, n = 0, 1, . . .} characterized by the
transition probability matrix P and one-stage (random) rewards ηij ·ri+rij

(i, j ∈ I, j 6= i) accrued to the transition from state i into state j.
From (12) and (13) we directly conclude

Ei[ξn] = r
(1)
i +

∑
j∈I

pij · Ej [ξn−1] (14)

Ei[ξn]2 = r
(2)
i +

∑
j∈I

pij · Ej [ξn−1]2

+2 ·
∑
j∈I

pij · [ri · d(1)
ij + rij ] · Ej [ξn−1] (15)
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where

r
(1)
i =

∑
j∈I

pij · [ri · d(1)
ij + rij ] (16)

r
(2)
i =

∑
j∈I

pij · {[ri]2 · d(2)
ij + [rij ]2 + 2 · ri · d(1)

ij · rij}. (17)

By using the more appealing notation Ri(n) = Ei[ξn], Si(n) = Ei[ξn]2,
(14), (15) take on the forms:

Ri(n + 1) = r
(1)
i +

∑
j∈I

pij ·Rj(n), (18)

Si(n + 1) = r
(2)
i + 2 ·

∑
j∈I

pij · [ri · d(1)
ij + rij ] ·Rj(n)

+
∑
j∈I

pij · Sj(n). (19)

For the variance Vi(·) = Si(·)− [Ri(·)]2 we now arrive after some algebra by
using (18), (19)

Vi(n + 1) = r
(2)
i + 2 ·

∑
j∈I

pij · [ri · d(1)
ij + rij ] ·Rj(n)

−
∑
j∈I

pij · [Ri(n + 1) + Rj(n)] · [Ri(n + 1)−Rj(n)]

+
∑
j∈I

pij · Vj(n). (20)

Remark 1 (Transient case.) For the so-called transient case, i.e. when

lim
n→∞

Ri(n) = Ri, lim
n→∞

Si(n) = Si, lim
n→∞

Vi(n) = Vi,

(18), (19) and (20) obtain the closed form:

Ri = r
(1)
i +

∑
j∈I

pij ·Rj , (21)

Si = r
(2)
i + 2 ·

∑
j∈I

pij · (ri · d(1)
ij + rij) ·Rj +

∑
j∈I

pij · Sj , (22)

Vi = r
(2)
i − [Ri]2 +

∑
j∈I

pij · {2 · (ri · d(1)
ij + rij) ·Rj + [Rj ]2}

+
∑
j∈I

pij · Vj . (23)
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5 Mean Reward Variance in Markov Chains: Infinite Horizon

To investigate the asymptotic behaviour of the variance Vi(n) we focus our
attention on the recursive formula (20) and employ well-known facts on the
asymptotic behaviour of Ri(n) as based upon (7).

By (7) in the third term of (20), we can substitute:

Ri(n + 1) + Rj(n) = 2 · n · gr + gr + wr
i + wr

j + ε(n), (24)

Ri(n + 1)−Rj(n) = gr + wr
i − wr

j + ε(n). (25)

Hence∑
j∈I

pij · [Ri(n + 1) + Rj(n)] · [Ri(n + 1)−Rj(n)]

= 2 · n · gr · (gr + wr
i −

∑
j∈I

pij · wr
j) +

∑
j∈I

pij · {[gr + wr
i ]

2 − [wr
j ]

2}+ ε(n)

= 2 · n · gr · r(1)
i +

∑
j∈I

pij · {[gr + wr
i ]

2 − [wr
j ]

2}+ ε(n). (26)

Similarly for the second term of (20) we obtain by (7)∑
j∈I

pij · [ri · d(1)
ij + rij ] ·Rj(n)

=
∑
j∈I

pij · [ri · d(1)
ij + rij ] · [n · gr + wr

j + ε(n)]

= n · gr · r(1)
i +

∑
j∈I

pij · [ri · d(1)
ij + rij ] · wr

j + ε(n). (27)

Substituting (26) and (27) in (20) now yields

Vi(n + 1) =
∑
j∈I

pij · Vj(n) + r
(2)
i + 2 ·

∑
j∈I

pij · [ri · d(1)
ij + rij ] · wr

j

−
∑
j∈I

pij · {[gr + wr
i ]

2 − [wr
j ]

2}+ ε(n)

=
∑
j∈I

pij · Vj(n) + si + ε(n), (28)

where for the elements si of the vector s we obtain after some algebra:

si = r
(2)
i +

∑
j∈I

pij · (2 · [ri · d(1)
ij + rij ] · wr

j + [wr
j ]

2)− [gr + wr
i ]

2

=
∑
j∈I

pij · {[ri]2 · d(2)
ij + 2 · ri · d(1)

ij · [rij + wr
j ] + [rij + wr

j ]
2}

−[gr + wr
i ]

2. (29)
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Furthermore, by (9) for the last term of (29) we get

−[gr + wr
i ]

2 = [gr]2 − [wr
i ]

2 − 2 · gr · [gr + wr
i ]

= [gr]2 − [wr
i ]

2 − 2 · gr ·
∑
j∈I

pij · [ri · d(1)
ij + rij + wr

j ]

which by substitution in (29) and some algebra yields

si =
∑
j∈I

pij · {[ri]2 · d(2)
ij + [rij ]2 + 2 · ri · d(1)

ij · rij

+ 2 · [ri · d(1)
ij + rij ] · wr

j + [wr
j ]

2}+ [gr]2 − [wr
i ]

2

− 2 · gr ·
∑
j∈I

pij · [ri · d(1)
ij + rij + wr

j ]

=
∑
j∈I

pij · {[ri]2 · d(2)
ij + 2 · ri · d(1)

ij · [rij − gr + wr
j ]

+ [rij − gr + wr
j ]

2} − [wr
i ]

2. (30)

Hence, in matrix form we have:

V (n + 1) = s + P · V (n) + ε(1)(n) (31)

where the elements of the vector ε(1)(n) converge to zero geometrically, that
is, for some numbers c > 0 and δ ∈ (0, 1): ‖ε(1)(n)‖ ≤ c · δn.

Growth rate. In order to investigate the behaviour of V (n) for n large, let

W (n + 1) = s + P ·W (n) (32)

and
X(n) = V (n)−W (n). (33)

Hence, in line with (5) for R(n), the vector W (n) can be regarded as
the total reward vector over n steps for a Markov reward chain with one
step reward vector s. As a consequence, similarly to (7), we can conclude
the existence of a vector w(2) such that

W (n) = g(2) · n + w(2) + ε(n). (34)

In words that is, W (n) possesses a linear growth rate g(2) in n up to a
geometric convergence to the null vector and vector w(2). The constant
vector g(2) along with vector w(2) are uniquely determined by

w(2) + g(2) = s + P ·w(2), P ∗ ·w(2) = 0 (35)

where elements of s are calculated by (29) or (30).
Iterating (33) we immediately conclude that

‖X(n)‖ ≤ ‖
n∑

k=1

P k · ε(1)(k)‖ ≤
n∑

k=1

‖ε(1)(k)‖ < c · 1
1− δ

=: C. (36)
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Theorem 1 For the (constant) growth rate g(2) (vector g(2)) and vector
w(2) as determined by (35), some geometrically converging function ε(n),
some constant C and some bounded vector c(n) with ‖c(n)‖ < C

V (n) = n · g(2) + w(2) + ε(n) + c(n) for all n (37)

and hence,

g(2) = lim
n→∞

V (n)
n

= lim
n→∞

W (n)
n

= P ? · s. (38)

Proof The relations follow directly combining (31), (32), (33) and (36) with
c(n) equal to X(n).

Remark 2 By (9) the coefficients wr
i ’s are normalized by

∑
i∈I πi · wr

i = 0.
Since by assumption AS 1 the Markov chain has a single class of recurrent
states, the first equation in (9) still holds if we replace wr

i by w̃r
i = wr

i + c
(i = 1, 2, . . . , N), where c is an arbitrary constant.

As a consequence, by examining the formulas (29), (30) we can conclude
that (38) still holds if in (29), (30) we replace all wr

i ’s by w̃r
i ’s.

Since
∑

i∈I πi · pij = πj for arbitrary real ci’s it holds∑
i∈I

∑
j∈I

πi · pij · cj =
∑
i∈I

πi · ci.

Then, since by (9):
∑

i∈I πi · wr
i = 0 and defining

s̃i = r
(2)
i − [gr]2 + 2 ·

∑
j∈I

pij · [ri · d(1)
ij + rij ] · wr

j (39)

we can conclude that

g(2) =
∑
i∈I

πi · si =
∑
i∈I

πi · s̃i. (40)

Remark 3 Assume that ri ≡ 0 for all i ∈ I. Then (cf. (29), (30)) si takes
on the form:

si =
∑
j∈I

pij · {[rij + wr
j ]

2} − [gr + wr
i ]

2

=
∑
j∈I

pij · {[rij − gr + wr
j ]

2} − [wr
i ]

2. (41)

Moreover, by (39) we have

s̃i =
∑
j∈I

pij · {[rij ]2 + 2 · rij · wr
j} − [gr]2

=
∑
j∈I

pij · {[rij − gr]2 + 2 · rij · wr
j}. (42)
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6 Mean Reward Variance in Semi-Markov Processes

In analogy with (2) and (4) we are thus interested in the “mean” variance
defined by

G :=
g(2)

gt
=

∑
j∈I πj · sj∑

j∈I πj · d(1)
j

. (43)

Below we present two approaches how to calculate this mean variance G.

Theorem 2 The mean variance G given by (43) can be calculated using
the limiting probabilities of the semi-Markov processes as

G =
∑
j∈I

πj · sj =
∑
j∈I

πj · ŝj independently of i ∈ I (44)

where
si = si/d

(1)
i , ŝi = s̃i/d

(1)
i (45)

and

πi =
πi · d(1)

i∑N
j=1 πj · d(1)

j

. (46)

Proof Since under assumptions AS 1 and AS 2, the rows of the lim-
iting matrix P

∗
of the considered semi-Markov process Y (t) are identi-

cal and equal to the row vector π = [π1, . . . , πN ] where elements πi =
limt→∞{Y (t)|Y (0) = i} are given by (46) (see e.g. [11], [12]), the proof
follows immediately by inserting (45) and (46) in (40).

In what follows we show how to calculate the mean variance using for-
mulas similar to those for calculating the mean reward. To this end, let
G be a diagonal matrix with all diagonal elements equal to G = g(2)/gt.
Premultiplying (10) by G and subtracting from (35) we immediately get

u = s− G · d(1) + P · u (47)

where
u = w(2) − G ·wt. (48)

So we have arrived at

Theorem 3 The mean variance G can be calculated as a solution of (47).
The solution (G, u) of (47) is unique up to an additive constant to vectors
u, and unique under the additional normalizing condition P ? · u = 0.
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