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Abstract We provide weak sufficient conditions for a full-service policy
to be optimal in a queueing control problem in which the service rate is a
dynamic decision variable. In our model there are service costs and holding
costs and the objective is to minimize the expected total discounted cost
over an infinite horizon. We begin with a semi-Markov decision model for a
single-server queue with exponentially distributed inter-arrival and service
times. Then we present a general model with weak probabilistic assumptions
and demonstrate that the full-service policy minimizes both finite-horizon
and infinite-horizon total discounted cost on each sample path.

1 Introduction

We consider a single-server queueing system in which the service rate is
a dynamic decision variable. There is a service cost per unit time (a non-
decreasing function of the service rate) and a holding cost per unit time
(a non-decreasing function of the number of customers in the system). The
objective is to minimize the expected discounted cost over a finite or infinite
horizon.

For the problem without discounting, under rather general conditions,
it is well known that an optimal policy always serves at the fastest possible
rate (the full-service policy). The conditions include a requirement that the
fastest rate minimize the expected service cost incurred during the service
time of a single customer. Since the full-service policy clearly minimizes the
holding cost incurred up to any time point, it is intuitively obvious in this
case that it minimizes the total expected cost until the n-th departure for
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any n, and hence the long-run average expected cost as well. This intuition
was the basis for a rigorous proof of the optimality of the full-service pol-
icy for a very general single-server queueing system in a seminal paper by
Sobel [4].

For the problem with discounting, this intuition is no longer valid. It
may be preferable to use a slower, cheaper rate to save on the service-cost
rate now, since the resulting higher future cost is discounted and thus has
a diminished impact on the present value of the total cost. Nonetheless, it
is clear that the full-service policy will still often be optimal in the prob-
lem with discounting, provided that the discount rate is sufficiently small.
There are scattered results in the literature that confirm this conjecture,
but often under strong economic and probabilistic conditions. In particu-
lar, most papers assume exponentially distributed inter-arrival and service
times, in order to formulate the optimization problem as a semi-Markov
decision process (SMDP).

It is the objective of this paper to provide a unified treatment of the
optimality of a full-service policy for the discounted-cost problem. In par-
ticular, we seek the weakest possible economic and probabilistic conditions
under which a full-service policy is optimal. To fix ideas and provide a brief
review of the literature, we begin (Section 2) with a general SMDP model
for the exponential case, which leads naturally to a general set of sufficient
conditions for the optimality of a full-service policy in that setting, for the
case of a linear holding-cost function. The key to this analysis is a trans-
formation, in which we measure the cost of each policy relative to that of
a fixed policy, namely the policy that always uses the zero service rate (the
no-service policy). The analysis of this transformed SMDP model suggests
a set of sufficient conditions for a much more general model, which is pre-
sented in Section 3. In this setting we are able to use sample-path analysis to
prove that the full-service policy is optimal in a more general sense. Namely,
it minimizes the total discounted cost until the n-th departure, for any re-
alization of the sequence of arrival times and service requirements of the
customers. The analysis is similar to that used by Sobel [4] for the problem
without discounting. Finally, in Section 4 we return to the SMDP model for
the exponential case and show how the optimality of a full-service policy
extends to non-linear holding-cost functions.

2 An M/M/1 Queue with Discounted Costs.

We consider an M/M/1 queue with fixed arrival rate λ and service rate µ,
which can be dynamically varied between 0 and µ̄ < ∞. There is a service
cost which is incurred at rate c(µ) ≥ 0 while service rate µ is in effect,
where c(·) is continuous and non-decreasing in µ ∈ [0, µ̄] with c(0) = 0.
There is a nonnegative holding cost rate h(i) per unit time while there are
i customers in system, where h(i) is non-decreasing in i ≥ 0. Future costs
are continuously discounted at rate α > 0. The objective is to minimize the
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expected α-discounted total cost over an infinite horizon, from each starting
state i ∈ S = {0, 1, ...}, where the state is the number of customers in the
system.

We observe the system at each arrival and service completion instant
(i.e., at each change of state) in order to formulate the problem as a semi-
Markov decision process (SMDP). Let v(i) denote the minimum expected
total discounted cost over an infinite horizon, starting from state i ≥ 0. At
each change of state, a service rate µ ∈ [0, µ̄] is selected, which then remains
in effect until the next change of state. Without loss of generality we assume
that µ = 0 is always selected when i = 0. Using standard arguments, one
can show that v satisfies the optimality equations,

v(i) = min
µ∈[0,µ̄]

{
h(i) + c(µ)
α + λ + µ

+
(

λ

α + λ + µ

)
v(i + 1)

+
(

µ

α + λ + µ

)
v(i− 1)

}
, i ≥ 1 , (1)

v(0) =
h(0)
α + λ

+
(

λ

α + λ

)
v(1) . (2)

For i ≥ 1, note that (1) holds if and only if

(α + λ + µ)v(i) ≤ h(i) + c(µ) + λv(i + 1) + µv(i− 1) ,

or, equivalently,

(α + λ + µ̄)v(i) ≤ h(i) + c(µ) + λv(i + 1) + µv(i− 1) + (µ̄− µ)v(i) ,

for all µ ∈ [0, µ̄], with equality for at least one µ. But the last assertion is
true if and only if

(α+λ+µ̄)v(i) = min
µ∈[0,µ̄]

{h(i)+c(µ)+λv(i+1)+µv(i−1)+(µ̄−µ)v(i)} . (3)

On the other hand, equation (2) for i = 0 holds if and only if

(α + λ + µ̄)v(0) = h(0) + c(0) + λv(1) + µ̄v(0)
≤ h(0) + c(µ) + λv(1) + (µ̄− µ)v(0) + µv(−1) ,

for all µ ∈ [0, µ̄], where the latter inequality holds since c(µ) ≥ c(0) = 0 for
all µ ∈ [0, µ̄], and we take v(−1) = v(0). Hence (2) is equivalent to

(α + λ + µ̄)v(0) = min
µ∈[0,µ̄]

{h(0) + c(µ) + λv(1) + µv(−1) + (µ̄− µ)v(0)} ,

which in turn is equivalent to (3) for i = 0.
It follows that v(·) satisfies the uniformized version (3) of the optimality

equation for all i ≥ 0. By appropriate choice of time units we assume that
α + λ + µ̄ = 1, without loss of generality. Thus v(·) satisfies

v(i) = h(i) + λv(i + 1) + min
µ∈[0,µ̄]

{c(µ) + µv(i− 1) + (µ̄− µ)v(i)} , i ≥ 0 ,
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or, equivalently,

v(i) = h(i)+λv(i+1)+µ̄v(i)+ min
µ∈[0,µ̄]

{c(µ)−µ[v(i)−v(i−1)]} , i ≥ 0 . (4)

Note that v(i) − v(i − 1) is the benefit of a service completion in state i,
i.e., the savings in expected future discounted cost from being in state i− 1
rather than i. While in state i and using service rate µ, we incur a direct
service cost at rate c(µ), while service completions occur at rate µ, each
bringing a benefit v(i) − v(i − 1). Therefore, the net variable cost rate (to
be minimized) is g(i, µ) := c(µ) − µ[v(i) − v(i − 1)]. Let µ(i) denote the
(largest) minimizer of g(i, µ) in [0, µ̄]. The following lemma is immediate.

Lemma 1 Suppose v(i)− v(i− 1) is nondecreasing in i ≥ 1. That is, v(·)
is convex in the integer variable i ≥ 0. Then µ(i) is nondecreasing in i ≥ 0.

2.1 Inductive Proof of Convexity of v(·)

Thus, to prove that an optimal policy is monotonic, it suffices to show that
v(i) is convex in i. Henceforth we shall make the following assumption.

Assumption. The holding cost rate, h(i), is convex in i ≥ 0.

The standard approach for proving that the optimal value function, v(·),
is convex is induction on a sequence of successive approximations, vn(i), to
v(i). Let {vn, n ≥ 0} be defined recursively by v0 ≡ 0 and, for n ≥ 1, i ≥ 0,
by

vn(i) = h(i) + λvn−1(i + 1) + min
µ∈[0,µ̄]

{c(µ) + µvn−1(i− 1) + (µ̄−µ)vn−1(i)} .

It follows from the theory of Markovian decision processes (see Puter-
man [3]) that vn(i) → v(i) as n → ∞, for all i ≥ 0. Convexity of v will
then follow if we can show that vn is convex for each n. This can easily be
done by induction on n (see, e.g., Lippman [2]). Thus we have the following
theorem.

Theorem 1 For all n ≥ 0, vn(i) is convex in i ≥ 0. Hence v(i) is convex
in i ≥ 0 and an optimal service-rate control policy for the infinite-horizon,
discounted problem is monotonic: µ(i) is non-decreasing in i ≥ 0.

2.2 Extensions and comments.

1) More general service-cost function and feasible action set.

Nothing in the proof of monotonicity specifically required that c(µ) be
continuous or that the feasible action set A be an interval, [0, µ̄]. We simply
need for maximum of the r.h.s. of the optimality equation to be attained
for each i and for A to contain both µ = 0 (see above) and a finite maximal
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element µ̄ (in order to be able to uniformize the process). For example,
we could have a finite set of possible actions, A = {µ0, µ1, . . . , µm}, where
0 = µ0 < µ1 < . . . < µm = µ̄. More generally, it suffices for A to be a
compact (that is, closed and bounded) set on which c(µ) is continuous.

2) Elimination of non-optimal actions.

For each state i ≥ 1, our problem has the form minµ∈A{c(µ) − µK},
where K is a given constant. Suppose µ1 < µ2 < µ3 (µ1, µ2, µ3 ∈ A) and

c(µ2)− c(µ1)
µ2 − µ1

≥ c(µ3)− c(µ2)
µ3 − µ2

. (5)

Then it follows that either c(µ2) − µ2K ≥ c(µ1) − µ1K or c(µ2) − µ2K ≥
c(µ3)− µ3K and hence action µ2 need never be used in an optimal policy.
This implies that, without loss of optimality, we may replace A by its convex
hull [0, µ̄] and c(µ) by its lower convex envelope on [0, µ̄]. (Here it is assumed
that 0 and µ̄ are, respectively, the minimal and maximal elements of A.)

3) Optimality of extremal (bang-bang) policies.

Suppose A has the property that c(µ̄)/µ̄ ≤ c(µ)/µ, for all µ ∈ A. Then
(5) holds with µ1 = 0, µ2 = µ, and µ3 = µ̄, and it follows that an extremal or
bang-bang policy is optimal: in each state i ≥ 1, use either action 0 or action
µ̄. When combined with the monotonicity of an optimal policy, this implies
that there exists an integer i0 such that µ(i) = 0, 0 ≤ i ≤ i0, µ(i) = µ̄,
i > i0.

2.3 Optimality of a Full-Service Policy.

A full-service policy is a special case of an extremal policy, in which i0 = 0:
that is, the maximal service rate, µ̄, is used in all states i ≥ 1. In many
cases, it is intuitively plausible that a full-service policy should be optimal,
at least when there is no discounting. To see why, note that c(µ)/µ =
c(µ)× (1/µ) = (service cost rate per unit time) × (expected service time) =
expected service cost per completed service. Thus, the extremal condition,
c(µ̄)/µ̄ ≤ c(µ)/µ, for all µ ∈ A, implies that the full-service policy minimizes
the expected cost per completed service, and hence the expected service cost
incurred up to the n-th departure, for any n. But it is obvious that the full-
service policy also minimizes the expected holding cost up to any time t, and
therefore (in particular) up to the nth departure, for any n. Thus the full-
service policy minimizes the expected total cost and the expected average
cost per departure until the nth departure. In any stable system, the long-
run average departure rate equals the long-run average arrival rate, which
is independent of policy (and equals λ in the present problem). Thus, the
full-service policy minimizes the long-run average total cost per unit time.

A rigorous proof, based on this argument, is in Sobel [4]. As the above
argument suggests, the proof works for very general interarrival-time and
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service-time distributions. Essentially, the interarrival-time sequence can be
arbitrary, possibly dependent and/or non-identically distributed, as long as
the long-run average interarrival time exists (i.e., as long as the sequence
satisfies an ergodic theorem). The service times are drawn from a family
of distributions, indexed by the rate µ, that is, the reciprocal of the mean
service time, with the property that a service time performed at rate µ is
stochastically larger than one performed at rate µ′ > µ.

The argument does not work when there is discounting, however, since
then we may wish to use a slow service rate and incur a lower cost rate c(µ)
now, postponing the service completion and incurring higher holding costs
in the future, when their present value is lower.

Let us now return to the discounted problem, to see if we can use the
SMDP formulation to determine conditions under which a full-service policy
is optimal. First, we shall assume that

c(µ̄)/µ̄ ≤ c(µ)/µ , for all µ ∈ A , (6)

which implies that an extremal, monotonic policy is optimal (see comment
(3) above). Thus, there exists an integer i0 such that µ(i) = 0, 0 ≤ i ≤ i0,
µ(i) = µ̄, i > i0. Our goal is to find a condition which, together with (6),
implies that i0 = 0. To keep the exposition simple, we shall assume that the
holding cost is linear:

h(i) = h · i , i ≥ 0 . (7)

(We sketch the extension to non-linear holding costs in Section 4.) In the
linear-holding-cost case the optimality equation (4) takes the form

v(i) = h · i + λv(i + 1) + µ̄v(i) + min
µ∈A

{c(µ)−µ[v(i)− v(i− 1)]} , i ≥ 0 . (8)

It turns out to be convenient to work with a transformed model. We
do this by expressing all value functions relative to the value function for
a fixed policy: the policy that chooses service rate µ = 0 in all states i
(the no-service policy). Let vo denote the value function associated with
this policy. That is, vo(i) is the expected total α-discounted cost over an
infinite horizon, starting from state i at time 0, assuming that no customers
are ever served. It follows from the usual conditioning arguments that vo

satisfies the following (uniformized) functional equation,

vo(i) = h · i + λvo(i + 1) + µ̄vo(i) , i ≥ 0 , (9)

where as before we have assumed that α + λ + µ̄ = 1.
Since no service cost is ever incurred, vo(i) equals the α-discounted total

holding cost incurred over the infinite horizon by the i customers in the
system at time 0 and by all future arrivals, assuming that no customers are
ever served. Thus

vo(i) = E
[∫ ∞

0

e−αth · (i + N(t))dt

]
, (10)
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where {N(t), t ≥ 0} is a Poisson process with parameter λ. It is a straight-
forward exercise to use this formula to derive an explicit algebraic expression
for vo(i), in terms of i and the parameters h, α and λ. But we shall only
need (10) and the fact that vo satisfies the functional equation (9).

First observe (from (10) that

vo(i)− vo(i− 1) = E
[∫ ∞

0

e−αthdt

]
= h/α , i ≥ 1 . (11)

The difference vo(i)−vo(i−1) is precisely the expected α-discounted holding
cost incurred from time 0 to time ∞ by the additional customer who is in
the system from time 0 to time ∞.

Now let us define ṽ(i) := v(i) − vo(i), i ≥ 0. Subtracting (9) from the
optimality equation (8) for v, we obtain

ṽ(i) = λṽ(i + 1) + µ̄ṽ(i) + min
µ∈A

{c(µ)− µ[v(i)− v(i− 1)]} , i ≥ 0 ,

so that ṽ satisfies the optimality equations

ṽ(i) = λṽ(i + 1) + µ̄ṽ(i)
+min

µ∈A
{c(µ)− µ[ṽ(i)− ṽ(i− 1) + h/α]} , i ≥ 1 , (12)

ṽ(0) = λṽ(1) + µ̄ṽ(0) , (13)

where we have used (11).

Remark. We see from (12) and (13) that the effect of subtracting vo from
the optimal value functions is to replace the original problem, in which
holding costs were charged continuously through time, with an equivalent
problem with no holding cost per se, in which a reward h/α is earned at
every service completion.

The intuitive idea behind this transformation is the following. Charg-
ing holding costs continuously through time is equivalent to charging the
system, at each arrival point, the discounted total holding cost, h/α, which
the arriving customer would incur over the infinite horizon if never served,
and then, when the customer departs, rewarding the system with the sav-
ings in discounted holding cost (once again, h/α) caused by the customer
not being in the system over the infinite horizon remaining from that time
point. Since the amounts charged at the arrival points are independent of
the service-rate control policy, we can remove them from the value functions
without affecting the optimization. This is precisely what we are doing when
we subtract vo from the optimal value functions. This idea, which is due to
Bell [1], is discussed more rigorously in a general setting in Stidham [5].

From (12) we see that the full-service policy will be optimal if (and only
if)

ṽ(i)− ṽ(i− 1) ≥ c(µ̄)
µ̄

− h/α , i ≥ 1 . (14)
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Theorem 2 Suppose (6) and (7) hold and

c(µ̄)
µ̄

≤ h/α . (15)

Then the full-service policy is optimal.

Proof . We shall use induction on a sequence of successive approximations,
ṽn, to the transformed optimal value function, ṽ, to show that (14) holds.
Let ṽn, n ≥ 0, be defined recursively by ṽ0 ≡ 0 and, for n ≥ 1,

ṽn(i) = λṽn−1(i + 1) + µ̄ṽn−1(i)
+min

µ∈A
{c(µ)− µ[ṽn−1(i)− ṽn−1(i− 1) + h/α]} , i ≥ 1 , (16)

ṽn(0) = λṽn−1(1) + µ̄ṽn−1(0) , (17)

Suppose ṽn−1 satisfies (14) (the induction hypothesis). Then the full-service
policy is optimal for the n-stage problem, so that

ṽn(i) = λṽn−1(i + 1) + c(µ̄) + µ̄[ṽn−1(i− 1)− h/α] , i ≥ 1 ,

and ṽn(0) satisfies (17). It follows that (i ≥ 2)

ṽn(i)− ṽn(i− 1) = λ[ṽn−1(i + 1)− ṽn−1(i)] + µ̄[ṽn−1(i− 1)− ṽn−1(i− 2)]

≥ (λ + µ̄)
(

c(µ̄)
µ̄

− h/α

)
≥ c(µ̄)

µ̄
− h/α ,

where the last inequality follows from (15) and the assumption that α+λ+
µ̄ = 1. Similarly, for i = 1 we have

ṽn(1)− ṽn(0) = λ[ṽn−1(2)− ṽn−1(1)] + c(µ̄)− µ̄(h/α)

≥ (λ + µ̄)
(

c(µ̄)
µ̄

− h/α

)
≥ c(µ̄)

µ̄
− h/α .

Thus we have shown that ṽn satisfies (14), which completes the inductive
step. To start the induction, note that

ṽ0(i)− ṽ0(i− 1) = 0 ≥ c(µ̄)
µ̄

− h/α ,

since ṽ0 ≡ 0. Since ṽn → ṽ as n → ∞, it follows that ṽ satisfies (14) and
hence a full-service policy is optimal.

Referring again to the transformed optimality equation (12) and observ-
ing that

c(µ)− µ · h/α = µ

(
c(µ)
µ

− h/α

)
,
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we see that the problem is equivalent to one in which the system earns
a lump-sum benefit, b(µ) := h/α − c(µ)/µ, at the instant of each service
completion in state i when the service rate is µ, and no other rewards
or costs are earned or incurred. With this interpretation, it is intuitively
obvious that, if b(µ̄) ≥ b(µ) for all µ ∈ A and b(µ̄) ≥ 0 – that is, if (6) and
(15) hold, respectively – then the full-service policy will be optimal, since it
both maximizes the benefit earned at each service completion and minimizes
the time until each service completion. In the presence of discounting, a
given benefit has a larger present value if it is earned earlier, provided the
benefit is non-negative – hence the need for condition (15). Compare this
argument to the intuitive argument for optimality of the full-service policy
in the undiscounted case, given at the beginning of this section. In the
undiscounted case we needed only the first of the two conditions, namely
(6).

This intuitive argument for the optimality of the full-service policy in
the discounted case can be made the basis of a rigorous proof in a more
general setting, in which the interarrival times and service times need not
be exponential nor mutually independent and in which optimality holds on
a sample-path basis. This is the subject of the next section.

3 The G/G/1 Queue with Discounting

In this section we consider a single-server queue with arbitrarily distributed
interarrival and service times in the presence of discounting. The notation
and assumptions follow (roughly) those of Sobel [4], who considered a gen-
eral single-server queue without discounting. Like Sobel, we obtain strong
(stochastic-order and/or sample-path) finite- and infinite-horizon versions
of the optimality of the full-service policy.

Customers are numbered j = 1, 2, . . ., in order of arrival. Let A0 = 0 and
let Aj ≥ 0 denote the instant of arrival of customer j, where Aj ≥ Aj−1, j ≥
1. (Note that batch arrivals are permitted.) We make no distributional nor
independence assumptions about the sequence of random variables, {Aj , j ≥
1}. Let Xj denote the work required by customer j, j ≥ 1. Assume that Xj ,
j ≥ 1, are i.i.d. non-negative random variables distributed as the generic
random variable X with distribution function

G(x) = P{X ≤ x} , x ≥ 0 .

The stochastic sequences {Xj , j ≥ 1} and {Aj , j ≥ 1} are independent of
each other.

The server works at a deterministic rate µ, µ ∈ A, where µ is a decision
(control) variable and A is the set of feasible service rates, which contains
a maximal element, µ̄. Thus, if the server works at rate µ throughout the
service of customer j, then customer j’s service time is Sj = Xj/µ, with
E[Sj ] = 1/µ.
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As an example, suppose the customers are messages in a communication
system and the server is a communication channel. Then Xj could be the
number of packets in message j and the service rate µ could be the number
of packets per second transmitted by the channel, so that the time required
to transmit message j is

Xj packets
µ packets/second

= Xj/µ seconds .

Let Fµ denote the distribution function of the service time, when service
rate µ is chosen, where µ ∈ A. Then under our assumptions we have, for
any µ, µ′ ∈ B, µ < µ′,

Fµ(z) = P{X/µ ≤ z} = G(µz) ≤ G(µ′z) = P{X/µ′ ≤ z} = Fµ′(z) , z ≥ 0 .

Thus the service time is stochastically decreasing in µ. In particular, for all
µ ∈ A, we have

Fµ(z) ≤ Fµ̄(z) , z ≥ 0 ,

so that the service time is stochastically minimized by choosing the maximal
service rate, µ̄.

Without loss of generality, we shall assume henceforth that E[X] =∫∞
0

xdG(x) = 1. That is, we shall measure work in units of the mean work
required by a customer. In the communication example, if the average mes-
sage length is, say, 10 mb, this would mean that the transmission rate µ is
measured in the number of multiples of 10 mb that can be transmitted per
second. It follows that the mean service time, when using service rate µ, is
given by ∫ ∞

0

zdFµ(z) = E[X/µ] = 1/µ .

Thus, µ corresponds to what we often mean by service rate: the reciprocal
of the mean service time.

A service rate µ is chosen at the beginning of the service of each cus-
tomer and remains in effect until that service is completed. Motivated by
the results for the M/M/1 queue, we assume that the system earns a deter-
ministic, lump-sum benefit, b(µ), at the instant of each service completion
when service rate µ is in effect, and that no other rewards or costs are earned
or incurred. We make the following assumptions about the benefit function,
b(µ).

Assumption 1. b(µ̄) ≥ b(µ) for all µ ∈ A.

Assumption 2. b(µ̄) ≥ 0.

Future benefits are continuously discounted at discount rate α.
Let µj denote the service rate chosen for the service of customer j.

We claim that setting µj = µ̄ for all j ≥ maximizes the total discounted
benefit earned up to and including the kth departure, for all k ≥ 1, for any
realization of the customer arrival times, Aj , and work requirements, Xj ,
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j ≥ 1. This is intuitively obvious, following the argument at the end of the
previous section, but it can be formally proved as follows.

Consider an arbitrary policy for choosing the service rates, µj , associated
with customers j = 1, 2, . . .. Consider a fixed and arbitrary realization of
the arrival times, Aj , j ≥ 1, and work requirements, Xj , j ≥ 1. Let Dj

denote the departure time of customer j, j ≥ 1. First note that, since the
queue discipline is first-come, first served,

Dj = max{Aj , Dj−1}+ Sj

= max{Aj , Dj−1}+ Xj/µj .

for all j ≥ 1 (with D0 := 0). Since Xj/µj is minimized by setting µj = µ̄,
it follows by induction on j = 1, 2, . . . , that the departure time, Dj , of each
customer j is minimized by the full-service policy. Now, for any k ≥ 1, the
total discounted benefit earned in [0, Dk] is

k∑
j=1

e−αDj b(µj)

Hence the full-service policy maximizes this quantity.
Thus, we have the following theorem, which is a sample-path counterpart

of the result for the M/M/1 queue.

Theorem 3 Under Assumptions 1 and 2, for any realization of the arrival
times, Aj, j ≥ 1, and work requirements, Xj, j ≥ 1, setting µj = µ̄ for all
j ≥ 1 maximizes the total discounted benefit earned during [0, Dk],

k∑
j=1

e−αDj b(µj) ,

for all k ≥ 1.

The following corollaries are immediate.

Corollary 1 The full-service policy maximizes the expected discounted ben-
efit earned until the kth departure,

E

 k∑
j=1

e−αDj b(µj)

 ,

for all k ≥ 1.

Corollary 2 The full-service policy maximizes the expected discounted ben-
efit earned over an infinite horizon,

E

 ∞∑
j=1

e−αDj b(µj)

 .
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4 Extension to Non-Linear Holding Cost in the SMDP Model

In this section we return to the SMDP model of Section 2 for the system
with exponentially distributed inter-arrival and service times and show how
the optimality of a full-service policy extends to non-linear holding costs.

Let h = {h(i), i ∈ S} denote the holding-cost function and assume (as
before) that h(i) is a convex, non-decreasing function of i ∈ S. To indicate
the dependence of the optimal value function on the holding-cost function,
we use the notation, v(i;h), for the minimal total discounted cost over an
infinite horizon, starting in state i, given that the holding-cost function is
h. Then v(i;h) satisfies the (uniformized) optimality equation (cf. (4))

v(i;h) = h(i) + λv(i + 1;h) + µ̄v(i;h)
+min

µ∈A
{c(µ)− µ[v(i;h)− v(i− 1;h)]} , i ≥ 1 ,

v(0;h) = h(0) + λv(1;h) + µ̄v(0;h)

Similarly, let vf (i;h) denote the value function for the full-service policy,
which satisfies the following functional equation:

vf (i;h) = c(µ̄) + h(i) + λvf (i + 1;h) + µ̄vf (i− 1;h) , i ≥ 1 ,

vf (0;h) = h(0) + λvf (1;h) + µ̄vf (0;h)

We know that the full-service policy is optimal for the holding-cost function
h if and only if

c(µ̄)− µ̄[vf (i;h)− vf (i− 1;h)] ≤ c(µ)− µ[vf (i;h)− vf (i− 1;h)] , µ ∈ A .
(18)

for all i ≥ 1. It is intuitively plausible that, if the full-service policy is
optimal for a particular holding-cost function h, then it is also optimal for
all “larger” holding-cost functions. The exact meaning of “larger”, however,
must be specified with care. The following lemma gives the result that we
shall need.

Lemma 2 Consider two holding-cost functions, h1 = {h1(i), i ∈ S} and
h2 = {h2(i), i ∈ S}, and suppose that h1(i) − h1(i− 1) ≤ h2(i) − h2(i − 1)
for all i ≥ 1. Then, if the full-service policy is optimal for h1, it is also
optimal for h2.

Proof Suppose the full-service policy is optimal for h1, so that (18) holds for
all i ≥ 1 with h = h1. Then to show that the full-service policy is optimal
for h2, it suffices to show that

vf (i;h1)− vf (i− 1;h1) ≤ vf (i;h2)− vf (i− 1;h2) , i ≥ 1 . (19)

We verify this inequality by induction on a sequence of approximations to
the infinite-horizon value functions. For any holding-cost function h, let the
(finite-horizon) value functions vf

n(i;h) be defined recursively for n ≥ 1 by

vf
n(i;h) = c(µ̄) + h(i) + λvf

n−1(i + 1;h) + µ̄vf
n−1(i− 1;h) , i ≥ 1 ,

vf
n(0;h) = h(0) + λvf

n−1(1;h) + µ̄vf
n−1(0;h) ,
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with vf
0 (·;h) ≡ 0. Let n ≥ 1 be given and suppose

vf
n−1(i;h

1)− vf
n−1(i− 1;h1) ≤ vf

n−1(i;h
2)− vf

n−1(i− 1;h2) , i ≥ 1 .

Then for i ≥ 2 we have

vf
n(i;h1)− vf

n(i− 1;h1)

= h1(i)− h1(i− 1) + λ(vf
n−1(i + 1;h1)− vf

n−1(i;h
1))

+µ̄(vf
n−1(i− 1;h1)− vf

n−1(i− 2;h1))

≤ h2(i)− h2(i− 1) + λ(vf
n−1(i + 1;h2)− vf

n−1(i;h
2))

+µ̄(vf
n−1(i− 1;h2)− vf

n−1(i− 2;h2))

= vf
n(i;h2)− vf

n(i− 1;h2) ,

whereas for i = 1 we have

vf
n(1;h1)− vf

n(0;h1)

= c(µ̄) + h1(1)− h1(0) + λ(vf
n−1(2;h1)− vf

n−1(1;h1))

+µ̄(vf
n−1(0;h1)− vf

n−1(0;h1))

≤ c(µ̄) + h2(1)− h2(0) + λ(vf
n−1(2;h2)− vf

n−1(1;h2))

+µ̄(vf
n−1(0;h2)− vf

n−1(0;h2))

= vf
n(1;h2)− vf

n(0;h2) .

It follows by induction on n that (19) holds and hence the full-service policy
is optimal for the holding-cost function h2.

We shall presently use this lemma to extend our results on the optimality
of the full-service policy from linear to non-linear holding-cost functions.
The lemma has some interest in its own right, however. Note first that
its conditions require an ordering between the first differences of h1 and
those of h2 – not the values themselves. In particular, the conditions put
no restrictions on h1(0) and h2(0); it could be the case that h1(0) > h2(0).
Indeed, we could have h1(i) > h2(i) for all i ≥ 0 and still satisfy the
conditions of the lemma. Conversely, it could be the case that h1(i) ≤ h2(i)
for all i ≥ 0 but the conditions of the lemma are not satisfied.

Now consider an arbitrary convex, non-decreasing holding-cost function,
h2 = {h2(i), i ∈ S}. Define the linear holding-cost function h1 = {h1(i), i ∈
S} as follows:

h1(i) = (h2(1)− h2(0)) · i , i ≥ 0 .

Then it follows from the convexity of h2 that h1(i) − h1(i − 1) ≤ h2(i) −
h2(i− 1) for all i ≥ 1, so that the conditions of Lemma 2 are satisfied. The
following theorem is then a direct consequence of Lemma 2 and Theorem 2.

Theorem 4 Suppose (6) holds and

c(µ̄)
µ̄

≤ (h2(1)− h2(0))/α . (20)
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Then the full-service policy is optimal for the problem with holding-cost func-
tion h2.
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