
Mathematical Methods in Operations Research 2005
Special issue in honor of Arie Hordijk

Dynamic Programming in Real Life: A
Two-Person Dice Game

Henk Tijms1, Jan van der Wal2

1 Department of Econometrics, Vrije Universiteit, Amsterdam, The Netherlands.
E-mail: tijms@feweb.vu.nl

2 Department of Quantitative Economics, Faculty of Economics and Economet-
rics, University of Amsterdam and Department of Mathematics and Computing
Science, Eindhoven University of Technology, Eindhoven, The Netherlands. E-
mail: jan.v.d.wal@tue.nl

Received: January 2005 / Revised version: April 2005

Abstract Dynamic programming can solve a broad range of optimization
problems. In the seventies and eighties of the last century the fundamentals
of dynamic programming were developed. In this paper we present a real-
world application of dynamic programming and stochastic game theory.
This problem offers challenging questions of a general nature.

1 Introduction

Arie Hordijk has worked in many fields, among them dynamic programming.
Dynamic programming is a branch of applied mathematics, which greatly
developed in the period 1970-1985. Arie Hordijk made path-breaking con-
tributions to the field in that period (and also afterwards 1985), first as
member of the Amsterdam group and later as chairholder in Leiden. His
thesis ”Dynamic Programming and Markov Potential Theory” published in
1974 is a milestone in the field, see [2]. The Amsterdam group, the Eind-
hoven group as well as groups in Germany were active in the field of dynamic
programming and stochastic games in the seventies and the eighties of the
last century. These groups had joint conferences, amongst others in a castle
in Rheda, and those meetings were quite stimulating for the many contri-
butions made to the field. The authors of this paper belonged in those days
to the Amsterdam group and the Eindhoven group, respectively. It is there-
fore a pleasure to contribute to this special issue, and, particularly, to an
interesting problem in dynamic programming and stochastic games. This
problem is a real-world problem, which might seem of recreational nature
at first sight, but offers many challenging questions of a general nature.
Questions we can only partially answer in this paper.

2 Henk Tijms, Jan van der Wal

The problem deals with a real-world situation arising in the final of an
American TV show. At the end of the show the two remaining contestants
have to play a two-person dice game. The contestants each sit behind a
panel with a battery of buttons numbered as 1, 2, . . . , 10. In each stage of
the game, the contestants must simultaneously press one of the buttons,
where the contestants cannot observe each other’s decision. The number
on the button pressed by the contestant is the number of dice that are
thrown for the contestant. For each contestant the score of the throw for
that contestant is added to his/her total, provided that none of the dice
in that throw showed the outcome 1; otherwise no points are added to the
current total of the candidate. The candidate who first reaches a total of
G points is the winner. In case both candidates reach the goal of G points
in the same move, the winner is the candidate who has the largest total.
In case these totals are equal, the game is called a tie. At each stage of
the game both candidates have full information about his/her own current
total and the current total of the opponent. The formulation of the game
will be such that it is zero-sum and stochastic. What is the optimal strategy
looking like? Do random actions appear or not? And if so, when?

2 Some preliminaries

Let us first look at the distribution of the number of points earned in a
single throw with d dice. Define the random variable Yd as

Yd := the number of points added to a contestant’s total, throwing d dice.

Letting the random variable Xi denote the number of pips shown by the
i-th dice, Yd equals X1 + · · ·+Xd if none of X1, . . . , Xd equals 1 and Yd is 0
otherwise. The random variables X1, . . . , Xd are independent and identically
distributed. Moreover, given that Xi is not 1, the conditional distribution
of Xi is the uniform distribution on the integers 2, 3, . . . , 6. This conditional
distribution has expected value 4. The probability of getting not a single 1
in a throw of d dice is (5

6)d. Elementary calculations next show that

E(Yd) =
(

5
6

)d

4d and var(Yd) =
(

5
6

)d

(16d2 + 2d)−

((
5
6

)d

4d

)2

.

The maximum of E(Yd) is easily found by looking at the difference between
E(Yd+1) and E(Yd) :

E(Yd+1)− E(Yd) =
(

5
6

)d

4
(

5
6
(d + 1)− d

)
.

The difference is positive for d < 5, is zero for d = 5, and is negative for
d > 5. Hence E(Yd) is maximized by taking d equal to 5 or 6.

Dynamic Programming in Real Life: A Two-Person Dice Game 3

Remark. A more intuitive reasoning is the following. Given that you al-
ready have put d dice in your hand, should you pick up another one? If one
of the previous dice will give a 1 it is irrelevant what you do. So assume none
of the other dice will give a 1. Then on the average, every one of them will
contribute 4 points. So, in this situation with probability 1/6 you loose 4d
points and with probability 5/6 you win another 4 points. This is essentially
the same comparison we made before.

The following table gives the probability q
(d)
0 together with the mean µd

and standard deviation σd of the random variable Yd for various values of
d.

d µd σd q
(d)
0 d µd σd q

(d)
0

1 3.3333 1.9720 0.8333 7 7.8143 12.7139 0.2791
2 5.5556 4.0445 0.6944 8 7.4422 13.6559 0.2326
3 6.9444 6.2113 0.5787 9 6.9770 14.3521 0.1938
4 7.7160 8.2327 0.4823 10 6.4602 14.8292 0.1615
5 8.0376 10.0084 0.4019 20 2.0867 12.7917 0.0261
6 8.0376 11.5029 0.3349 30 0.5055 7.7885 0.0042

Table 1 Mean, standard deviation and q
(d)
0 for one throw.

As we see, if we only look at the mean, the optimal number of dice is 5
or 6 for the situation of a single move. But as the standard deviation shows,
throwing with 5 or 6 dice is not the same. With 6 dice the throw will be
more ‘risky’. If you quickly need a lot of points, then you have to take a risk
and throws with 7 or more dice come in the picture.
Next, we discuss how to compute the probability distribution of Yd. For any
d ≥ 1, let

q
(d)
i = P (Yd = i) and r

(d)
i = P (Yd = i |Yd > 0) for i = 0, 1,

Obviously,

q
(d)
0 = 1 −

(
5
6

)d

, and q
(d)
i =

(
5
6

)d

r
(d)
i for i, d = 1, 2, . . . ,

and

r
(d)
i =

6∑
j=2

1
5
r
(d−1)
i−j , i = 2d, 2d + 1, · · · , 6d, and r

(d)
i = 0 otherwise ,

with the convention r
(0)
0 = 1 and r

(0)
i = 0 for i 6= 0.

4 Henk Tijms, Jan van der Wal

3 Two one-person games

To get some insight, let us consider the following two one-person games. In
the first one you try to minimize the expected number of throws needed to
reach G points. In the second one you maximize the probability of reaching
G in a given number of throws.

3.1 Expected number of throws

Define V (i) as the minimal expected number of throws needed to reach G
when starting with i points. Then we have the ordinary dynamic program-
ming equation (cf. [1]):

V (i) = min
d

1 + q
(d)
0 V (i) +

6d∑
j=2d

q
(d)
j V (i + j)

or, equivalently,

V (i) = min
d

 1

1− q
(d)
0

1 + V (i) +
6d∑

j=2d

q
(d)
j V (i + j)

 ,

where V (i) = 0, i ≥ G .
Table 2 below gives the minimal expected number of throws and d∗(i),

the optimal number of dice to use in state i. As we see, the number to use
varies quite a lot. Even using 7 dice is optimal in some states. Apparently
the optimal strategy attempts to reach G = 40 in a certain number of
‘successful’ throws. In states 0 up to 11 this number is 2, whereas for i ≥ 12
this number appears to be 1.

i V (i) d∗(i) i V (i) d∗(i) i V (i) d∗(i) i V (i) d∗(i)

39 1.2000 1 29 2.0836 3 19 3.1929 6 9 4.5383 4
38 1.2000 1 28 2.1427 4 18 3.3010 6 8 4.6426 5
37 1.4400 2 27 2.2138 4 17 3.4355 6 7 4.7438 5
36 1.4400 2 26 2.3218 4 16 3.5919 6 6 4.8484 5
35 1.4880 2 25 2.4674 4 15 3.7622 6 5 4.9568 5
34 1.5840 2 24 2.5876 5 14 3.9239 7 4 5.0690 5
33 1.7376 3 23 2.6644 5 13 4.0539 7 3 5.1850 5
32 1.7664 3 22 2.7729 5 12 4.2027 7 2 5.3049 5
31 1.8259 3 21 2.9129 5 11 4.3254 4 1 5.4287 5
30 1.9277 3 20 3.0787 5 10 4.4300 4 0 5.5565 5

Table 2 Results for minimizing the expected number of throws for G = 40

Dynamic Programming in Real Life: A Two-Person Dice Game 5

3.2 Limited number of throws

Define p(l)(i) to be the maximal probability of reaching G in l throws, when
starting with i points. Then, using DP , we have

p(l+1)(i) = max
d

∑
j

q
(d)
j p(l)(i + j)

 ,

where p(l)(i) = 1 for i ≥ G , l = 0, 1, · · · , and p(0)(i) = 0 for i < G.
The results of a maximization with G = 40 and a limit L on the number

of throws are given in Table 3. As we see, the number of dice to use is more
regular, i.e., varies in a more monotonic way than in the case of minimizing
the expected number of throws. You also see, that starting in 0 with 6
throws left you throw 4 dice. If the score turns out to be 0, you continue
with 5 dice in the next throw. If then the score is 17 you continue with 5
dice again, but if it is 22 you continue with 4 dice, etc.

3.3 The game

The rules of the game state that in each throw simultaneously the two
players have to decide upon the number of dice to use, so without seeing
what the opponent is doing but knowing and using the scores so far. So,
after a number of throws player 1 has reached a points and player 2 has
reached b points. Thus the state space is two dimensional. If now player 1
decides to use k dice and player 2 uses l then the state changes from (a, b)
into (a + i, b + j) with probability q

(k)
i q

(l)
j .

The game is a stochastic terminating zero-sum game. If we assume that
the number of dice to be used in each throw is limited by some number, D
say (D = 10 in the TV game), then the game can be solved by dynamic
programming recursively.

The value of the game is equal to the probability that player 1 wins minus
the probability that player 2 wins, given that both players play optimally.
Define

V (a, b) =

1 if a > b and a ≥ G;
0 if a = b ≥ G;

−1 if a < b and b ≥ G.

(1)

We want to determine V (a, b) for both a and b less than G and the
optimal, possibly randomized, actions that guarantee this value.

3.4 Randomized actions

The first question might be: do the players have to randomize the number of
dice to use in a throw? Some insight is already gained by just looking at the

6 Henk Tijms, Jan van der Wal

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6
i P (i) d∗ P (i) d∗ P (i) d∗ P (i) d∗ P (i) d∗ P (i) d∗

39 0.833 1 0.972 1 0.995 1 0.999 1 1.000 1 1.000 1
38 0.833 1 0.972 1 0.995 1 0.999 1 1.000 1 1.000 1
37 0.694 2 0.921 1 0.982 1 0.996 1 0.999 1 1.000 1
36 0.694 2 0.907 2 0.975 1 0.994 1 0.999 1 1.000 1
35 0.667 2 0.894 2 0.967 2 0.990 1 0.997 1 0.999 1
34 0.611 2 0.867 2 0.957 2 0.987 2 0.996 1 0.999 1
33 0.574 3 0.838 2 0.945 2 0.982 2 0.994 2 0.998 1
32 0.560 3 0.812 3 0.930 2 0.976 2 0.992 2 0.998 2
31 0.532 3 0.795 3 0.916 2 0.969 2 0.990 2 0.997 2
30 0.486 3 0.765 3 0.898 3 0.960 2 0.986 2 0.995 2
29 0.471 4 0.743 3 0.885 3 0.952 2 0.982 2 0.994 2
28 0.455 4 0.716 3 0.868 3 0.941 3 0.977 2 0.992 2
27 0.428 4 0.693 4 0.851 3 0.932 3 0.972 2 0.989 2
26 0.395 5 0.667 4 0.830 3 0.921 3 0.965 2 0.986 2
25 0.386 5 0.649 4 0.812 3 0.909 3 0.959 3 0.983 2
24 0.370 5 0.625 4 0.793 4 0.897 3 0.952 3 0.979 2
23 0.346 5 0.597 5 0.773 4 0.883 3 0.944 3 0.975 2
22 0.325 6 0.577 5 0.755 4 0.869 3 0.936 3 0.970 3
21 0.316 6 0.561 5 0.738 4 0.855 3 0.927 3 0.965 3
20 0.302 6 0.539 5 0.716 4 0.839 4 0.917 3 0.959 3
19 0.281 6 0.510 5 0.691 4 0.822 4 0.905 3 0.953 3
18 0.268 7 0.494 6 0.675 5 0.808 4 0.895 3 0.946 3
17 0.259 7 0.480 6 0.659 5 0.794 4 0.884 3 0.939 3
16 0.246 7 0.460 6 0.639 5 0.778 4 0.872 3 0.931 3
15 0.229 7 0.436 6 0.616 5 0.759 4 0.858 4 0.923 3
14 0.220 8 0.421 7 0.598 5 0.742 4 0.846 4 0.914 3
13 0.213 8 0.408 7 0.581 5 0.726 4 0.833 4 0.905 3
12 0.202 8 0.391 7 0.563 6 0.708 5 0.820 4 0.895 3
11 0.187 8 0.371 7 0.542 6 0.690 5 0.805 4 0.884 3
10 0.182 9 0.356 8 0.525 6 0.674 5 0.792 4 0.874 4
9 0.175 9 0.345 8 0.510 6 0.659 5 0.778 4 0.864 4
8 0.165 9 0.331 8 0.493 6 0.642 5 0.763 4 0.853 4
7 0.154 10 0.314 8 0.473 6 0.623 5 0.747 4 0.841 4
6 0.150 10 0.301 8 0.457 7 0.607 5 0.732 4 0.829 4
5 0.144 10 0.291 9 0.443 7 0.591 5 0.717 5 0.817 4
4 0.136 10 0.278 9 0.428 7 0.574 5 0.702 5 0.804 4
3 0.126 10 0.264 9 0.411 7 0.557 6 0.687 5 0.791 4
2 0.115 10 0.248 9 0.392 7 0.538 6 0.670 5 0.778 4
1 0.102 10 0.230 10 0.373 7 0.520 6 0.653 5 0.763 4
0 0.088 10 0.214 10 0.355 7 0.501 6 0.636 5 0.749 4

Table 3 Maximal probability of reaching G = 40 in at most L throws.

Dynamic Programming in Real Life: A Two-Person Dice Game 7

game starting in (G − 1, G − 1). Knowing that the value of this symmetric
state has to be zero we can check wether there is a ‘deterministic move’ (i.e.,
using a fixed number of dice) that guarantees the value 0. If there would be
an optimal deterministic throw, then we must have for some d ≤ D, where
D is the maximal number of dice that can be thrown, and for all l

V (d,l)(G−1, G−1) :=
1

1− q
(d)
0 q

(l)
0

∑
i,j; i+j>0

q
(d)
i q

(l)
j V (G−1+i, G−1+j) ≥ 0 .

Computing minl V
(d,l)(G−1, G−1) for all d leads to the results in Table 4.

d minl V (d,l)(G− 1, G− 1) best response to d

1 -0.3951 2
2 -0.2282 3
3 -0.1282 4
4 -0.0649 5
5 -0.1072 1
6 -0.2467 1
7 -0.3656 1
8 -0.4666 1
9 -0.5522 1
10 -0.6245 1

Table 4 Best result for player 1 restricting to deterministic moves.

So, there is no optimal number of dice. The best number is 4, but even
then the best you can get is -0.0649. If your opponent knows the number of
dice you use, it is optimal for him to use one dice more, unless you use 5 or
more dice, then his optimal choice is 1. Thus, randomization is necessary.

4 The stochastic game

The two-person zero-sum stochastic game is in fact a terminating, even
contracting game. In each move (throw of the two players) the state of the
game gets closer to the payoff-zone: the set of states (a, b) with min{a, b} ≥
G. (Define the distance from (a, b) to the payoff-zone as 2G− a− b if both
a and b less than G. Then with a probability of at least 1 − (q(D)

0)2 the
distance decreases by at least 2.)

The value of the game and the optimal moves of the two players can be
computed by repeatedly solving the appropriate matrix games.

Let x = (x1, x2, . . . , xD) be a randomized move for player 1, i.e., player
1 throws d dice with probability xd where

∑
d xd = 1. The first approach to

think off is to recursively compute V (a, b) via a sequence of LP -problems,
starting in (a, b) = (G − 1, G − 1) and working backwards, step by step,

8 Henk Tijms, Jan van der Wal

until (a, b) = (0, 0). This requires to solve the optimization problem:

max V

subject to

∑
d

xd

 ∑
i+j>0

q
(d)
i q

(l)
j V (a + i, b + j) + q

(d)
0 q

(l)
0 V

 ≥ V, l = 1, . . . , D,

xd ≥ 0, d = 1, . . . , D,
∑

d

xd = 1 ,

where, for i + j > 0, the values V (a + i, b + j) have been computed before
and hence are known. (V is unrestricted in sign.) However, this optimiza-
tion problem is not exactly an LP -problem because of the nonlinear term∑

d xdq
(d)
0 q

(l)
0 V .

To make an LP -approach possible, we proceed as follows. Define V (n)(a, b)
as the value of the game if it is played at most n times with a terminal
reward 0, if the game has not reached the payoff-zone in n steps. Thus,
V (0)(a, b) := 0 if a < G and b < G. Also, define

V (n)(a, x, b, l) =
∑

d

xd

∑
i,j

q
(d)
i q

(l)
j V (n−1)(a + i, b + j), n > 0 ,

with the convention that, for n ≥ 0 and a ≥ G or b ≥ G, V (n)(a, b) = V (a, b)
with V (a, b) as defined in (1).

Then in iteration n in state (a, b) the value of the game and the (an)
optimal move for player 1 can be obtained from the following LP -problem
(cf. [3]):

Matrix game

max V

subject to

V (n)(a, x, b, l) ≥ V, l = 1, . . . , D,

xd ≥ 0, d = 1, . . . , D,
∑

d

xd = 1.

The optimal value V satisfies V = V (n)(a, b) and the optimal x(n)(a, b) is
the (an) optimal move for player 1 in state (a, b) in iteration n. V (n)(a, x, b, l)
converges exponentially fast to the value of the game, and x(n) is nearly
optimal for n sufficiently large.

Similarly, we can compute a (nearly) optimal strategy for player 2. Of
course, for symmetry reasons the optimal move for player 2 in (a, b) is the
same as the optimal move for player 1 in (b, a).

Dynamic Programming in Real Life: A Two-Person Dice Game 9

Remark 1 In order to profit from the contracting properties of the dy-
namic programming scheme for V n, one may introduce a so-called weighted
supremum norm µ. Defining µ(a, b) = αa+b for some α < 1 the model will
be contracting with respect to the µ-norm and nearly optimal strategies
and upper and lower bounds can be computed from the difference between
V (n+1) and V (n), cf. [4].

4.1 The optimal strategy

In Table 5 we present some results for the optimal strategy for the case
the maximum number of dice D is equal to 5. The table should be read as
follows. If, for instance, player 1 has G − 1 points and player 2 has G − 3
points, then player 1 will use 2, 4 or 5 dice with probabilities 0.172, 0.151
and 0.677 respectively.
Our results have also shown that for smaller values than G− 13 the players
use non-randomized decisions only.
What we also see, for instance in state (G − 5, G − 13) player 1 will use 4
dice and player 2 will use 5 dice. So both players use more dice then needed
to reach the payoff-zone in order to beat the other player in case none of
them throws a 1.

5 Variants

There are various modifications of this game possible. To mention a few.

1. Player 2 uses the optimal strategy with respect to one of one-person
games discussed before. What is the optimal response for player 1 and
how does this increase ‘his value’? This ‘game’ can still be solved by
ordinary DP .

2. Suppose at the start a coin is flipped to decide which player may start.
Then, alternatingly they throw a number of dice until one of the players
reaches G. Again simple DP suffices to obtain the optimal strategy.

3. Suppose when a player throws a 1 not only his score is 0, but he also
loses all (or some of) the points collected so far.

4. Suppose the players know the outcomes of their own throws, but don’t
know what the other player has been doing at all. This is a game with
imperfect information. Is it possible to determine an optimal strategy?

5. Suppose that in addition to the previous situation you also know how
many dice your opponent has used. This too is a game with imperfect
information.

References

1. Derman, C., Finite State Markovian Decision Problems, Academic Press, New
York, 1970.

10 Henk Tijms, Jan van der Wal

G-13 G-12 G-11 G-10 G-9 G-8 G-7 G-6 G-5 G-4 G-3 G-2 G-1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-13 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-12 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.144 0 0 0 0.238 0 0
1 1 1 1 1 1 0.856 1 1 1 0.762 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-11 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.366 0.140 0 0 0 0.233 0
1 1 1 1 1 1 0.634 0.860 1 1 1 0.767 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-10 0 0 0 0 0 0 0 0.203 0.089 0 0 0.268 0.156
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0.797 0.911 1 1 0.732 0.844
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-9 0 0 0 0 0 0 0 0.277 0.196 0.085 0 0 0.259
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0.723 0.804 0.915 1 1 0.741
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-8 0 0 0 0 0 0 0 0.335 0.272 0.192 0.083 0 0.330
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0.665 0.728 0.808 0.917 1 0.670
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

G-7 0 0 0 0 0 0 0 0 0.332 0.269 0.190 0.082 0
1 0.091 0.006 0 0 0 0 0 0 0 0 0 0
0 0.909 0.994 1 1 1 1 1 0.668 0.731 0.810 0.918 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.226 0.209 0.198 0.172 0.076

G-6 0 0 0 0 0 0 0 0 0 0.073 0.042 0 0
1 1 0.178 0.101 0.093 0.008 0 0 0 0 0 0 0
0 0 0.822 0.899 0.907 0.992 1 1 0.774 0.718 0.760 0.828 0.924
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.202 0.196 0.187 0.166

G-5 0 0 0 0 0 0 0 0.016 0 0.058 0.081 0.046 0
1 1 1 0.260 0.260 0.183 0.054 0 0 0 0 0 0
0 0 0 0.740 0.740 0.817 0.946 0.984 1 0.740 0.723 0.767 0.834
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.064 0.127 0.176 0.196 0.190 0.182

G-4 0 0 0 0 0 0 0 0 0.043 0.053 0.064 0.084 0.048
1 1 1 1 0.445 0.358 0.229 0.100 0 0 0 0 0
0 0 0 0 0.555 0.642 0.771 0.836 0.830 0.771 0.740 0.726 0.770
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.064 0.137 0.146 0.176 0.196 0.190

G-3 1 0.001 0 0 0 0 0 0 0 0.075 0.053 0.065 0.084
0 0.999 1 1 1 0.556 0.408 0.227 0.134 0 0 0 0
0 0 0 0 0 0.444 0.592 0.709 0.729 0.779 0.771 0.739 0.726
0 0 0 0 0 0 0 0 0 0 0 0 0.073
0 0 0 0 0 0 0 0 0.142 0.172 0.146 0.176 0.067

G-2 1 1 0.070 0.015 0 0 0 0 0 0 0.075 0.053 0.172
0 0 0.930 0.985 1 1 0.612 0.577 0.204 0.151 0 0 0
0 0 0 0 0 0 0.388 0.423 0.654 0.677 0.779 0.771 0.688
0 0 0 0 0 0 0 0 0 0 0 0.030 0
0 0 0 0 0 0 0 0 0 0.180 0.172 0.171 0.176

G-1 1 1 1 0.162 0.143 0.059 0 0 0 0 0 0 0.053
0 0 0 0.838 0.857 0.941 1 0.817 0.760 0.194 0.151 0.168 0
0 0 0 0 0 0 0 0.183 0.240 0.626 0.677 0.631 0.771

Table 5 Optimal strategy for player 1 in (k, l) with G− 13 ≤ k, l ≤ G− 1

2. Hordijk,A., Dynamic Programming and Markov Potential Theory, Mathemat-
ical Centre tracts 54, 1974.

3. Maitra, A. and D. Sudderth, Discrete Gambling and Stochastic Games,
Springer-Verlag, Berlin, 1996.

4. Van der Wal, J. and J. Wessels, Successive approximation methods for Markov
games, in: Markov Decision Theory, Mathematical Centre tracts 93 (eds. H.C.
Tijms and J.Wessels, pp. 39-55, 1977.

