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Abstract
This paper is written in honour to A. Hordijk.
It establishes product form results for a generic and instructive multi-class
tandem queue with blocking, to which A. Hordijk has directly and indi-
rectly contributed.
First, a sufficient and necessary product form characterization is provided.
Next, three special cases are briefly presented. These illustrate the pos-
sibility of product forms despite finite capacity constraints (blocking),
unproportional processor sharing mechanisms and resource contentions
(such as for access control).
The results are partially new and of interest for present-day applications.
In essence these rely upon the pioneering work by A. Hordijk.
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1 Introduction

Tandem structures are most naturally arising in a variety of practical queue-
ing applications ranging from classical production line structures, circuit
switch networks up to present-day applications as call centers and internet.

This paper therefore will investigate the existence of so-called product
form solutions for an instructive yet generic example of (two) interdependent
service stations (a tandem queue) and (two) interdependent job-classes.
First, a general sufficient and necessary condition will be derived to conclude
a product form solution. Next, three special cases are dealt with which show
the possibility of product forms also in the presence of:
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– Intermediate blocking and delays
– A load dependent service sharing over the stations
– Job-class interdependent access (and departure) blocking

In addition, the insensitivity phenomenon is addressed briefly. The results
are still highly actual and in the combined form as presented, which can be
regarded as a multi-class extension and combination of earlier results that
Arie Hordijk has contributed to, have not yet been reported.

2 General Product from Characterization

Purely for instructional and illustrative purpose, while still preserving the
generic structure of consecutive service stages and job-class dependent ser-
vice interactions, we restrict the presentation to a tandem structure with
two service stations, indexed by i = 1, 2, and two job-classes indexed, by
r = 1, 2. Let the vector n denote the state of the system as specified by:

n = (n1,n2) where
ni = (n1

i , n
2
i ) with nr

i the numbers of class-r jobs at station i.

Parametrization. Under the assumption of exponential interarrival and
service times, the following (exponential) parameters are then involved:

λr : arrival rate of class-r jobs at station 1.
µr

i : service parameter (of the exponential service requirement) of
a class-r job at station i.

fr
i (n1,n2) : total service capacity provided to class-r jobs at station i

when the system is in state n = (n1,n2).
br

ij(n1,n2) : probability that a transition of a class-r job from station i
to station j = i + 1 is accepted to change the system state
from n + er

i into n + er
j (see notation below) where

i = 0 indicates an arrival at the system and
j = 0 a departure from the system.

Notation. As we need to keep track of the total numbers of jobs also let,

t = (n1, n2) with ni = n1
i + n2

i , i = 1, 2;
z = (z1, z2) with zr = nr

1 + nr
2, r = 1, 2.

Furthermore, we use the unit vector er
i , ei, er with a + or a − sign for the

corresponding states to denote one job more or less. Hence, n + er
i for the

state with one class-r job more of at station i and n - er
j for the state with

one class-r job less at station j, and similarly z + er or z – er. We also use
the convention that n + er

0 = n− er
0 = n.
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Steady state distribution

Under natural ergodicity assumptions for its existence, let π(n1,n2) denote
the corresponding steady state distribution. We aim to investigate and char-
acterize the analytical feasibility of this distribution. To this end, it suffices
to find the (unique probability) solution of the global balance (or steady
state Kolmogorov) equations. With π(n1,n2) = 0 for all (n1,n2) /∈ C
where C is the set of admissible states (n1,n2), these are given by:



π(n)µ1
1f

1
1(n) b1

12(n− e1
1)+

π(n)µ2
1f

2
1(n) b2

12(n− e2
1)+

π(n)µ1
2f

1
2(n) b1

20(n− e1
2)+

π(n)µ2
2f

2
2(n) b2

20(n− e2
2)+

π(n)λ1b1
01(n)+

π(n)λ2b2
01(n)


=



π(n− e1
1)λ

1b1
01(n− e1

1)+
π(n− e2

1)λ
2b2

01(n− e2
1)+

π(n + e1
1 − e1

2)µ
1
1f

1
1(n + e1

1 − e1
2)

b1
12(n− e1

2)+
π(n + e2

1 − e2
2)µ

2
1f

2
1(n + e2

1 − e2
2)

b2
12(n− e2

2)+
π(n + e1

2)µ
1
2f

1
2(n + e1

2) b1
20(n)+

π(n + e2
2)µ

2
2f

2
2(n + e2

2) b2
20(n)


We cannot expect an analytic solution unless we might be able to decompose
these global equations into a more detailed balance equation for each i and
r separately. More precisely, with µr

0 = λr, fr
0 (n) ≡ 1, and i − 1 = 0 for

i = 1 and i + 1 = 0 for i = 2, for each i and r that is:

{
π(n)µr

i f
r
i (n) br

i(i+1)(n− er
i ) =

π(n− er
i + er

i−1)µ
r
i−1f

r
i−1(n− er

i + er
i−1) br

(i−1)i(n− er
i )

}
(1)

Adjoint Markov chain

To investigate the existence of a solution for (1), consider a continuous-time
Markov chain at C, which will be called an adjoint Markov chain, with
transition rates q̄(n+ er

i ,n+ er
j) for a change from a state n + er

i into n +
er
j given by:

q̄(n + er
i ,n + er

j) =

{
fr

i (n + er
i ) br

i(i+1)(n) , j = i+1

fr
i (n + er

i ) br
(i−1)i(n) , j = i−1

(2)

(Note that this chain coincides with the parametrization of the original
tandem system in the natural flow direction i → i + 1. In contrast though,
also a flow in opposite direction is constructed).

Let H(n) denote the corresponding steady state distribution at C. This
Markov chain is called reversible if for any pair of states n,n′:

H(n) q̄(n,n′ ) = H(n′ ) q̄(n′,n) (3)
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Result 1. There exists a solution π(n) which satisfies the station-class
balance relation (1) for each (i, r) if and only if the adjoint Markov chain
is reversible. In that case, with c a normalizing constant:

π(n) = cH(n)
∏

i

∏
r

[
1
µr

i

]nr
i

(4)

Result 1 is verified directly by substitution in the balance equations (1)
for each (i, r) separately. It characterizes the existence of a product form
solution by means of reversibility, despite the fact that the systems itself is
non-reversible.

Reversibility characterization. The major advantage of result 1 is that
it enables one to verify the existence of a (product form) solution of the form
(4), by simply investigating the existence of a reversible solution H(·). This
in turn, can be verified by the so-called Kolmogorov criterion for reversibility
(see [8]). In the present case that is, as based upon just the transition rates
(2). This can also be achieved by checking whether for any n ∈ C:

H(n) = c
K−1∏
k=0

[
q̄(nk → nk+1)
q̄(nk+1 → nk)

]
(5)

for any path n0 → n1 → . . . → nK → n (for which the denominator is
positive). Either of these checks in turn can generally be reduced to basic
cycles or short paths that directly suggest a necessary form of H(·) and a
decomposition in a service and routing component, satisfying:[

H(n + er
i )

H(n + er
j)

]
=

[
fr

j(n + er
j)

fr
i (n + er

i )

] [
br

ji(n)
br

ij(n)

]
(6)

Literature

The concept of an adjoint (artificial) Markov chain to characterize the ex-
istence (or not) of a product form solution has first been introduced and
exploited in Hordijk and Van Dijk [1]. A further extension and generaliza-
tion to job-locally balanced networks has been developed in Hordijk and
van Dijk [3]. And also extensions to partial balance results such as for de-
composition and multiple movements have been established (e.g. [11], [12]).

The product form characterization presented above can be regarded as
a multi-class extension of Hordijk and Van Dijk [1] and Van Dijk [10]. This
multi-class extension may still lead to novel applications of present-day prac-
tical interest. In essence though, these results rely upon the pioneering work
in the aforementioned references by Arie Hordijk.
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Remark (Insensitivity) A PF related aspect to which A. Hordijk also
contributed is that of insensitivity (Hordijk and Schassberger [7], Hordijk
and Van Dijk [3], [4]). Most notably, the class of symmetric and insensitive
disciplines (cf. [8], [13]) was extended in Hordijk and Van Dijk [2].

3 Special Cases

In this section some special cases will be presented for each of which the
reversibility condition of result 1 is satisfied so that the product form applies.
The verification of this condition with the specific form of H(·) presented, is
referred to or left to the reader. In each case, we focus on only one specific
aspect but any combination of them is easily concluded. The functions not
mentioned are standardly parameterized by:{

br
ij(n) = 1 ∀ i, j, r, n and

fr
i (n1,n2) = fr

i (nr
i ) ∀ i, r.

(7)

Let

F (n) =
∏

i

∏
r

 nr
i∏

k=1

fr
i (k)

−1

(8)

Case 1 (Blocking by total station populations) Assume that

br
i(i+1)(n1,n2) = bi+1(n1, n2)

As can be concluded directly from the proof in Hordijk and Van Dijk [1],
the reversibility condition (3) now reduces to:

b1(n1 + 1, n2)b2(n1, n2 + 1)b0(n1, n2)
= b1(n1, n2 + 1)b2(n1, n2)b0(n1 + 1, n2) (9)

For the natural situation with finite capacity constraints Ni condition (9)
is clearly violated by a standard blocking function: bi(n1, n2) = 1(ni+1≤Ni).
However, with these finite capacity constraints, condition (9) can still be
satisfied by setting bi(n1, n2) = 1(ni≤Ni, ni+1≤Ni+1) (where N0 = ∞) with

H(n) = 1(n∈C)F (n) with
C = {n|n1 ≤ N1, n2 ≤ N2, n1 + n2 6= N1 + N2}.

(10)

This type of product form result, as initiated in Hordijk and Van Dijk [1],
has also led to product form bounds for non-product form systems (e.g. [5],
[6] for overflow and [10], [15], [16], [17] for production line structures).

Remark (Reversible routing) Note that a PF condition of a reversible
routing as in [8] and [14] is necessarily violated by any tandem structure.
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Case 2 (Unproportional Processor Sharing) As an extension of stan-
dard processor sharing disciplines for one service location, in present-day
service structures, such as internet (cf. [19]), a single service entity may
have to share its capacity over multiple service stations or job-classes as
parameterized by:

fr
i (n1,n2) = Φ(n1 + n2) si(ni|n1 + n2), i = 1, 2, r = 1, 2 (11)

where Φ(·) represents the total service capacity of the service entity and
where si(·|·) represents the fraction of this capacity allocated to station
i. A processor sharing which would allocate capacity over both stations
proportional to the workloads present as recently reported in ([18]) is hereby
included by: si(ni|n1 +n2) = ni/(n1 +n2). But also unproportional sharing
functions over both stations might still retain the invariance condition (5),
for example:

si(ni|n1 + n2) =


2
3 i = 1, 1

3 i = 2, n1 > n2

1
3 i = 1, 2

3 i = 2, n1 < n2

1
3 i = 1, 2 n1 = n2

(12)

(Note that a capacity of 1
3 is lost when n1 = n2). Condition (5) or (6) can

now be verified with

H(n) =

[
n1+n2∏
k=1

Φ(k)

]−1 [
2max(n1,n2)

]−1

[3]n1+n2 (13)

This unproportional processor sharing product form has not been reported
(cf. [18]) and is still topical such as for internet modeling (cf. [19]).

Similar unreported product form results (e.g. as of the form in (12))
can also be concluded when the processor capacity is shared over different
job-classes, such as for voice and data in circuit switched or mobile commu-
nications.

Case 3 (Access blocking) As another present day feature in (tele)commu-
nications different access or allocation schemes and limitations might be in
order for different job-classes, such as illustrated below for circuit switched
(direct end-to-end connections) or packet switched (via intermediate stages)
communication structures. To this end, with zr the total number of class-r
jobs, let {

br
0 1(n) = Ar(z1, z2)

br
1 0(n) = br

2 0(n) = Dr(z1, z2)
(14)

Here
Ar(·, ·) is to be seen as an access (or arrival) blocking function while
Dr(·, ·) as a delay function for class-r jobs. (One may standardly think of
Dr(·, ·) ≡ 1 but below also an example will be given with Dr(·, ·) = 0).
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Let v(z1, z2) = (1, . . . 1, 2, . . . , 2) denote the vector with the first z1 com-
ponents equal to 1 and the next z2 equal to 2. Furthermore, for a vector
(r1, r2, . . . , rt) with ri = 1 or 2 for all i, let zr(r1, r2, . . . , rt) denote the
number of components equal to r (r = 1, 2).

The invariance condition (5) can then be shown to be equivalent to the
existence of a function P (z1, z2) such that for any configuration (z1, z2):

P (z1, z2) =
z1+z2∏
k=1

[
Ark

(
z1(r1, r2, ..., rt), z2(r1, r2, ..., rt)

)
Drk (z1(r1, r2, ..., rt), z2(r1, r2, ..., rt))

]
(15)

for any permutation (r1, r2, . . . , rz1+z2) from v(z1, z2) for which the denom-
inator is positive and under the assumption that there is at least one per-
mutation for which the denominator is positive. Furthermore, in this case
H(n) = F (n)P (z1, z2).

Example 1 : A rich class of (tele)communication examples (e.g. circuit
switch), in which case (15) is trivially satisfied with P (·, ·) ≡ 1 is provided
by: 

Ar(z1, z2) = 1(z+er∈ C) and Dr(z) ≡ 1 provided:

z ∈ C ⇒ z − er ∈ C (∀r) i.e.

C is coordinate convex

 (16)

Example 2 : As some sort of priority example for which (15) is also satis-
fied with P (·, ·) ≡ 1, type 2 jobs might not be accepted and handled (block
and stop type 2 services) where the workload of type 1 jobs exceeds some
threshold M1 by:{

A2(z1, z2) = D2(z1, z2) = 1(z1≤M1)

H(n) = F (n)

}
(17)

Retrospection

The pioneering work of Arie Hordijk in the field of stochastic and queueing
networks has led to a number of research directions and practical results:

– partial balance insights for product form characterizations,
– secure analytic performance bounds and
– insensitivity results.

His intuitive and fundamental probabilistic approach has been essential to
establish these results. The author is most grateful to him for the stim-
ulating collaboration in these research directions. Some special locations
and occasions at which crucial steps for this research have been made
are deeply kept in memory.
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